We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Dual quantum spin Hall insulator by density-tuned correlations in TaIrTe4.
Recent progress in large language models (LLMs) has led to their widespread adoption in various domains. However, these advancements have al… (see more)so introduced additional safety risks and raised concerns regarding their detrimental impact on already marginalized populations. Despite growing mitigation efforts to develop safety safeguards, such as supervised safety-oriented fine-tuning and leveraging safe reinforcement learning from human feedback, multiple concerns regarding the safety and ingrained biases in these models remain. Furthermore, previous work has demonstrated that models optimized for safety often display exaggerated safety behaviors, such as a tendency to refrain from responding to certain requests as a precautionary measure. As such, a clear trade-off between the helpfulness and safety of these models has been documented in the literature. In this paper, we further investigate the effectiveness of safety measures by evaluating models on already mitigated biases. Using the case of Llama 2 as an example, we illustrate how LLMs' safety responses can still encode harmful assumptions. To do so, we create a set of non-toxic prompts, which we then use to evaluate Llama models. Through our new taxonomy of LLMs responses to users, we observe that the safety/helpfulness trade-offs are more pronounced for certain demographic groups which can lead to quality-of-service harms for marginalized populations.
Recent progress in large language models (LLMs) has led to their widespread adoption in various domains. However, these advancements have al… (see more)so introduced additional safety risks and raised concerns regarding their detrimental impact on already marginalized populations. Despite growing mitigation efforts to develop safety safeguards, such as supervised safety-oriented fine-tuning and leveraging safe reinforcement learning from human feedback, multiple concerns regarding the safety and ingrained biases in these models remain. Furthermore, previous work has demonstrated that models optimized for safety often display exaggerated safety behaviors, such as a tendency to refrain from responding to certain requests as a precautionary measure. As such, a clear trade-off between the helpfulness and safety of these models has been documented in the literature. In this paper, we further investigate the effectiveness of safety measures by evaluating models on already mitigated biases. Using the case of Llama 2 as an example, we illustrate how LLMs' safety responses can still encode harmful assumptions. To do so, we create a set of non-toxic prompts, which we then use to evaluate Llama models. Through our new taxonomy of LLMs responses to users, we observe that the safety/helpfulness trade-offs are more pronounced for certain demographic groups which can lead to quality-of-service harms for marginalized populations.
The integration of diverse clinical modalities such as medical imaging and the tabular data obtained by the patients' Electronic Health Reco… (see more)rds (EHRs) is a crucial aspect of modern healthcare. The integrative analysis of multiple sources can provide a comprehensive understanding of a patient's condition and can enhance diagnoses and treatment decisions. Deep Neural Networks (DNNs) consistently showcase outstanding performance in a wide range of multimodal tasks in the medical domain. However, the complex endeavor of effectively merging medical imaging with clinical, demographic and genetic information represented as numerical tabular data remains a highly active and ongoing research pursuit. We present a novel framework based on hypernetworks to fuse clinical imaging and tabular data by conditioning the image processing on the EHR's values and measurements. This approach aims to leverage the complementary information present in these modalities to enhance the accuracy of various medical applications. We demonstrate the strength and the generality of our method on two different brain Magnetic Resonance Imaging (MRI) analysis tasks, namely, brain age prediction conditioned by subject's sex, and multiclass Alzheimer's Disease (AD) classification conditioned by tabular data. We show that our framework outperforms both single-modality models and state-of-the-art MRI-tabular data fusion methods. The code, enclosed to this manuscript will be made publicly available.
The creation of large, diverse, high-quality robot manipulation datasets is an important stepping stone on the path toward more capable and … (see more)robust robotic manipulation policies. However, creating such datasets is challenging: collecting robot manipulation data in diverse environments poses logistical and safety challenges and requires substantial investments in hardware and human labour. As a result, even the most general robot manipulation policies today are mostly trained on data collected in a small number of environments with limited scene and task diversity. In this work, we introduce DROID (Distributed Robot Interaction Dataset), a diverse robot manipulation dataset with 76k demonstration trajectories or 350 hours of interaction data, collected across 564 scenes and 84 tasks by 50 data collectors in North America, Asia, and Europe over the course of 12 months. We demonstrate that training with DROID leads to policies with higher performance and improved generalization ability. We open source the full dataset, policy learning code, and a detailed guide for reproducing our robot hardware setup.
The creation of large, diverse, high-quality robot manipulation datasets is an important stepping stone on the path toward more capable and … (see more)robust robotic manipulation policies. However, creating such datasets is challenging: collecting robot manipulation data in diverse environments poses logistical and safety challenges and requires substantial investments in hardware and human labour. As a result, even the most general robot manipulation policies today are mostly trained on data collected in a small number of environments with limited scene and task diversity. In this work, we introduce DROID (Distributed Robot Interaction Dataset), a diverse robot manipulation dataset with 76k demonstration trajectories or 350 hours of interaction data, collected across 564 scenes and 84 tasks by 50 data collectors in North America, Asia, and Europe over the course of 12 months. We demonstrate that training with DROID leads to policies with higher performance and improved generalization ability. We open source the full dataset, policy learning code, and a detailed guide for reproducing our robot hardware setup.
The creation of large, diverse, high-quality robot manipulation datasets is an important stepping stone on the path toward more capable and … (see more)robust robotic manipulation policies. However, creating such datasets is challenging: collecting robot manipulation data in diverse environments poses logistical and safety challenges and requires substantial investments in hardware and human labour. As a result, even the most general robot manipulation policies today are mostly trained on data collected in a small number of environments with limited scene and task diversity. In this work, we introduce DROID (Distributed Robot Interaction Dataset), a diverse robot manipulation dataset with 76k demonstration trajectories or 350 hours of interaction data, collected across 564 scenes and 84 tasks by 50 data collectors in North America, Asia, and Europe over the course of 12 months. We demonstrate that training with DROID leads to policies with higher performance and improved generalization ability. We open source the full dataset, policy learning code, and a detailed guide for reproducing our robot hardware setup.
The creation of large, diverse, high-quality robot manipulation datasets is an important stepping stone on the path toward more capable and … (see more)robust robotic manipulation policies. However, creating such datasets is challenging: collecting robot manipulation data in diverse environments poses logistical and safety challenges and requires substantial investments in hardware and human labour. As a result, even the most general robot manipulation policies today are mostly trained on data collected in a small number of environments with limited scene and task diversity. In this work, we introduce DROID (Distributed Robot Interaction Dataset), a diverse robot manipulation dataset with 76k demonstration trajectories or 350 hours of interaction data, collected across 564 scenes and 84 tasks by 50 data collectors in North America, Asia, and Europe over the course of 12 months. We demonstrate that training with DROID leads to policies with higher performance and improved generalization ability. We open source the full dataset, policy learning code, and a detailed guide for reproducing our robot hardware setup.
This paper presents a two-stage Multiple-Model Compression (MMC) approach for sampled electrical waveforms. To limit latency, the processing… (see more) is window-based, with a window length commensurate to the electrical period. For each window, the first stage compares several parametric models to get a coarse representation of the samples. The second stage then compares different residual compression techniques to minimize the norm of the reconstruction error. The allocation of the rate budget among the two stages is optimized. The proposed MMC approach provides better signal-to-noise ratios than state-of-the-art solutions on periodic and transient waveforms.