Publications

DRBench: A Realistic Benchmark for Enterprise Deep Research
Amirhossein Abaskohi
Tianyi Chen
Miguel Muñoz-Mármol
Curtis Fox
Amrutha Varshini Ramesh
Étienne Marcotte
Issam Hadj Laradji
We introduce DRBench, a benchmark for evaluating AI agents on complex, open-ended deep research tasks in enterprise settings. Unlike prior b… (see more)enchmarks that focus on simple questions or web-only queries, DRBench evaluates agents on multi-step queries (for example, ``What changes should we make to our product roadmap to ensure compliance with this standard?") that require identifying supporting facts from both the public web and private company knowledge base. Each task is grounded in realistic user personas and enterprise context, spanning a heterogeneous search space that includes productivity software, cloud file systems, emails, chat conversations, and the open web. Tasks are generated through a carefully designed synthesis pipeline with human-in-the-loop verification, and agents are evaluated on their ability to recall relevant insights, maintain factual accuracy, and produce coherent, well-structured reports. We release 15 deep research tasks across 10 domains, such as Sales, Cybersecurity, and Compliance. We demonstrate the effectiveness of DRBench by evaluating diverse DR agents across open- and closed-source models (such as GPT, Llama, and Qwen) and DR strategies, highlighting their strengths, weaknesses, and the critical path for advancing enterprise deep research. Code is available at https://github.com/ServiceNow/drbench.
DRBench: A Realistic Benchmark for Enterprise Deep Research
Amirhossein Abaskohi
Tianyi Chen
Miguel Muñoz-Mármol
Curtis Fox
Amrutha Varshini Ramesh
Étienne Marcotte
Issam Hadj Laradji
We introduce DRBench, a benchmark for evaluating AI agents on complex, open-ended deep research tasks in enterprise settings. Unlike prior b… (see more)enchmarks that focus on simple questions or web-only queries, DRBench evaluates agents on multi-step queries (for example, ``What changes should we make to our product roadmap to ensure compliance with this standard?") that require identifying supporting facts from both the public web and private company knowledge base. Each task is grounded in realistic user personas and enterprise context, spanning a heterogeneous search space that includes productivity software, cloud file systems, emails, chat conversations, and the open web. Tasks are generated through a carefully designed synthesis pipeline with human-in-the-loop verification, and agents are evaluated on their ability to recall relevant insights, maintain factual accuracy, and produce coherent, well-structured reports. We release 15 deep research tasks across 10 domains, such as Sales, Cybersecurity, and Compliance. We demonstrate the effectiveness of DRBench by evaluating diverse DR agents across open- and closed-source models (such as GPT, Llama, and Qwen) and DR strategies, highlighting their strengths, weaknesses, and the critical path for advancing enterprise deep research. Code is available at https://github.com/ServiceNow/drbench.
GRPO-$\lambda$: Credit Assignment improves LLM Reasoning
Large language models (LLMs) are increasingly deployed for tasks requiring complex reasoning, prompting significant interest in improving th… (see more)eir reasoning abilities through post-training. Especially RL based methods using verifiable reward, like the state-of-the-art GRPO, have shown to tremendously improve reasoning behaviors when applied as post-training methods. However, the lack of an explicit reward or critic model limits GRPO's ability to assign fine-grained credit across token sequences. In this work, we present GRPO-
GRPO-$\lambda$: Credit Assignment improves LLM Reasoning
Large language models (LLMs) are increasingly deployed for tasks requiring complex reasoning, prompting significant interest in improving th… (see more)eir reasoning abilities through post-training. Especially RL based methods using verifiable reward, like the state-of-the-art GRPO, have shown to tremendously improve reasoning behaviors when applied as post-training methods. However, the lack of an explicit reward or critic model limits GRPO's ability to assign fine-grained credit across token sequences. In this work, we present GRPO-
GRPO-$\lambda$: Credit Assignment improves LLM Reasoning
Large language models (LLMs) are increasingly deployed for tasks requiring complex reasoning, prompting significant interest in improving th… (see more)eir reasoning abilities through post-training. Especially RL based methods using verifiable reward, like the state-of-the-art GRPO, have shown to tremendously improve reasoning behaviors when applied as post-training methods. However, the lack of an explicit reward or critic model limits GRPO's ability to assign fine-grained credit across token sequences. In this work, we present GRPO-
Large Pre-Trained Models for Bimanual Manipulation in 3D
MalGPT: A Generative Explainable Model for Malware Binaries
Mohd Saqib
Steven H. H. Ding
Philippe Charland
MalGPT: A Generative Explainable Model for Malware Binaries
Mohd Saqib
Steven H. H. Ding
Philippe Charland
Recursive Self-Aggregation Unlocks Deep Thinking in Large Language Models
Test-time scaling methods improve the capabilities of large language models (LLMs) by increasing the amount of compute used during inference… (see more) to make a prediction. Inference-time compute can be scaled in parallel by choosing among multiple independent solutions or sequentially through self-refinement. We propose Recursive Self-Aggregation (RSA), a test-time scaling method inspired by evolutionary methods that combines the benefits of both parallel and sequential scaling. Each step of RSA refines a population of candidate reasoning chains through aggregation of subsets to yield a population of improved solutions, which are then used as the candidate pool for the next iteration. RSA exploits the rich information embedded in the reasoning chains -- not just the final answers -- and enables bootstrapping from partially correct intermediate steps within different chains of thought. Empirically, RSA delivers substantial performance gains with increasing compute budgets across diverse tasks, model families and sizes. Notably, RSA enables Qwen3-4B-Instruct-2507 to achieve competitive performance with larger reasoning models, including DeepSeek-R1 and o3-mini (high), while outperforming purely parallel and sequential scaling strategies across AIME-25, HMMT-25, Reasoning Gym, LiveCodeBench-v6, and SuperGPQA. We further demonstrate that training the model to combine solutions via a novel aggregation-aware reinforcement learning approach yields significant performance gains. Code available at https://github.com/HyperPotatoNeo/RSA.
Recursive Self-Aggregation Unlocks Deep Thinking in Large Language Models
Test-time scaling methods improve the capabilities of large language models (LLMs) by increasing the amount of compute used during inference… (see more) to make a prediction. Inference-time compute can be scaled in parallel by choosing among multiple independent solutions or sequentially through self-refinement. We propose Recursive Self-Aggregation (RSA), a test-time scaling method inspired by evolutionary methods that combines the benefits of both parallel and sequential scaling. Each step of RSA refines a population of candidate reasoning chains through aggregation of subsets to yield a population of improved solutions, which are then used as the candidate pool for the next iteration. RSA exploits the rich information embedded in the reasoning chains -- not just the final answers -- and enables bootstrapping from partially correct intermediate steps within different chains of thought. Empirically, RSA delivers substantial performance gains with increasing compute budgets across diverse tasks, model families and sizes. Notably, RSA enables Qwen3-4B-Instruct-2507 to achieve competitive performance with larger reasoning models, including DeepSeek-R1 and o3-mini (high), while outperforming purely parallel and sequential scaling strategies across AIME-25, HMMT-25, Reasoning Gym, LiveCodeBench-v6, and SuperGPQA. We further demonstrate that training the model to combine solutions via a novel aggregation-aware reinforcement learning approach yields significant performance gains. Code available at https://github.com/HyperPotatoNeo/RSA.
Recursive Self-Aggregation Unlocks Deep Thinking in Large Language Models
Test-time scaling methods improve the capabilities of large language models (LLMs) by increasing the amount of compute used during inference… (see more) to make a prediction. Inference-time compute can be scaled in parallel by choosing among multiple independent solutions or sequentially through self-refinement. We propose Recursive Self-Aggregation (RSA), a test-time scaling method inspired by evolutionary methods that combines the benefits of both parallel and sequential scaling. Each step of RSA refines a population of candidate reasoning chains through aggregation of subsets to yield a population of improved solutions, which are then used as the candidate pool for the next iteration. RSA exploits the rich information embedded in the reasoning chains -- not just the final answers -- and enables bootstrapping from partially correct intermediate steps within different chains of thought. Empirically, RSA delivers substantial performance gains with increasing compute budgets across diverse tasks, model families and sizes. Notably, RSA enables Qwen3-4B-Instruct-2507 to achieve competitive performance with larger reasoning models, including DeepSeek-R1 and o3-mini (high), while outperforming purely parallel and sequential scaling strategies across AIME-25, HMMT-25, Reasoning Gym, LiveCodeBench-v6, and SuperGPQA. We further demonstrate that training the model to combine solutions via a novel aggregation-aware reinforcement learning approach yields significant performance gains. Code available at https://github.com/HyperPotatoNeo/RSA.
Recursive Self-Aggregation Unlocks Deep Thinking in Large Language Models
Test-time scaling methods improve the capabilities of large language models (LLMs) by increasing the amount of compute used during inference… (see more) to make a prediction. Inference-time compute can be scaled in parallel by choosing among multiple independent solutions or sequentially through self-refinement. We propose Recursive Self-Aggregation (RSA), a test-time scaling method inspired by evolutionary methods that combines the benefits of both parallel and sequential scaling. Each step of RSA refines a population of candidate reasoning chains through aggregation of subsets to yield a population of improved solutions, which are then used as the candidate pool for the next iteration. RSA exploits the rich information embedded in the reasoning chains -- not just the final answers -- and enables bootstrapping from partially correct intermediate steps within different chains of thought. Empirically, RSA delivers substantial performance gains with increasing compute budgets across diverse tasks, model families and sizes. Notably, RSA enables Qwen3-4B-Instruct-2507 to achieve competitive performance with larger reasoning models, including DeepSeek-R1 and o3-mini (high), while outperforming purely parallel and sequential scaling strategies across AIME-25, HMMT-25, Reasoning Gym, LiveCodeBench-v6, and SuperGPQA. We further demonstrate that training the model to combine solutions via a novel aggregation-aware reinforcement learning approach yields significant performance gains. Code available at https://github.com/HyperPotatoNeo/RSA.