The next cohort of our program, designed to empower policy professionals with a comprehensive understanding of AI, will take place in Ottawa on November 28 and 29.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
We denote by z = (x,y) the input and output pair where x ∈ X ⊆ R and y ∈ Y ⊆ R . Let fθ(x) ∈ R be the output of the logits (i.e.,… (see more) the last layer before the softmax or sigmoid) of the model parameterized by θ. We use l(θ, z) = h(fθ(x)) − yfθ(x) to denote the loss function. Let g(·) be the activation function. We use x(i) to index i-th element of the vector x and xj to represent j-th variable in a set. The notation list is:
Diversifying search results is an important research topic in retrieval systems in order to satisfy both the various interests of customers … (see more)and the equal market exposure of providers. There has been a growing attention on diversity-aware research during recent years, accompanied by a proliferation of literature on methods to promote diversity in search and recommendation. However, the diversity-aware studies in retrieval systems lack a systematic organization and are rather fragmented. In this survey, we are the first to propose a unified taxonomy for classifying the metrics and approaches of diversification in both search and recommendation, which are two of the most extensively researched fields of retrieval systems. We begin the survey with a brief discussion of why diversity is important in retrieval systems
The concern that Artificial Intelligence (AI) and Machine Learning (ML) are entering a “reproducibility crisis” has spurred significant … (see more)research in the past few years. Yet with each paper, it is often unclear what someone means by “reproducibility” and where it fits in the larger scope of what we will call the “scientific rigor” literature. Ultimately, the lack of clear rigor standards can affect the manner in which businesses seeking to adopt AI/ML implement such capabilities. In this survey, we will use 66 papers published since 2017 to construct a proposed set of 8 high-level categories of scientific rigor, what they are, and the history of work conducted in each. Our proposal is that these eight rigor types are not mutually exclusive and present a model for how they influence each other. To encourage more to study these questions, we map these rigors to the adoption process in real-world business use cases. In doing so, we can quantify gaps in the literature that suggest an under focus on the issues necessary for scientific rigor research to transition to practice
Although disentangled representations are often said to be beneficial for downstream tasks, current empirical and theoretical understanding … (see more)is limited. In this work, we provide evidence that disentangled representations coupled with sparse base-predictors improve generalization. In the context of multi-task learning, we prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations. Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of this algorithm based on group Lasso multiclass SVM base-predictors, for which we derive a tractable dual formulation. It obtains competitive results on standard few-shot classification benchmarks, while each task is using only a fraction of the learned representations.
Although disentangled representations are often said to be beneficial for downstream tasks, current empirical and theoretical understanding … (see more)is limited. In this work, we provide evidence that disentangled representations coupled with sparse task-specific predictors improve generalization. In the context of multi-task learning, we prove a new identifiability result that provides conditions under which maximally sparse predictors yield disentangled representations. Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of this algorithm based on group Lasso multiclass SVM predictors, for which we derive a tractable dual formulation. It obtains competitive results on standard few-shot classification benchmarks, while each task is using only a fraction of the learned representations.
Test-time Defense against Adversarial Attacks: Detection and Reconstruction of Adversarial Examples via Masked Autoencoder
Yun-Yun Tsai
Ju-Chin Chao
Albert Wen
Zhaoyuan Yang
Chengzhi Mao
Tapan Shah
Junfeng Yang
Existing defense methods against adversarial attacks can be categorized into training time and test time defenses. Training time defense, i.… (see more)e., adversarial training, requires a significant amount of extra time for training and is often not able to be generalized to unseen attacks. On the other hand, test time defense by test time weight adaptation requires access to perform gradient descent on (part of) the model weights, which could be infeasible for models with frozen weights. To address these challenges, we propose DRAM, a novel defense method to Detect and Reconstruct the multiple types of Adversarial attacks via Masked autoencoder (MAE). We demonstrate how to use MAE losses to build a KS-test to detect adversarial attacks. Moreover, the MAE losses can be used to repair adversarial samples from unseen attack types. In this sense, DRAM neither requires model weight updates in test time nor augments the training set with more adversarial samples. Evaluating DRAM on the large-scale ImageNet data, we achieve the best detection rate of 82% on average on eight types of adversarial attacks compared with other detection baselines. For reconstruction, DRAM improves the robust accuracy by 6% ∼ 41% for Standard ResNet50 and 3% ∼ 8% for Robust ResNet50 compared with other self-supervision tasks, such as rotation prediction and contrastive learning.