Publications

Stochastic Generative Flow Networks
Ling Pan
Dinghuai Zhang
Moksh J. Jain
Longbo Huang
SUMMIT: Scaffolding OSS Issue Discussion Through Summarization
Saskia Gilmer
Avinash Bhat
Shuvam Shah
Kevin Cherry
Jinghui Cheng
SUMMIT: Scaffolding OSS Issue Discussion Through Summarization
Saskia Gilmer
Avinash Bhat
Shuvam Shah
Kevin Cherry
Jinghui Cheng
Supplementary Material for MixupE
Yingtian Zou
Vikas Verma
Sarthak Mittal
Wai Hoh Tang
Hieu Pham
Juho Kannala
Arno Solin
Kenji Kawaguchi
We denote by z = (x,y) the input and output pair where x ∈ X ⊆ R and y ∈ Y ⊆ R . Let fθ(x) ∈ R be the output of the logits (i.e.,… (see more) the last layer before the softmax or sigmoid) of the model parameterized by θ. We use l(θ, z) = h(fθ(x)) − yfθ(x) to denote the loss function. Let g(·) be the activation function. We use x(i) to index i-th element of the vector x and xj to represent j-th variable in a set. The notation list is:
A Survey of Diversification Metrics and Approaches in Retrieval Systems: From the Perspective of Search and Recommendation
Haolun Wu
Yansen Zhang
Chen Ma
Fuyuan Lyu
Diversifying search results is an important research topic in retrieval systems in order to satisfy both the various interests of customers … (see more)and the equal market exposure of providers. There has been a growing attention on diversity-aware research during recent years, accompanied by a proliferation of literature on methods to promote diversity in search and recommendation. However, the diversity-aware studies in retrieval systems lack a systematic organization and are rather fragmented. In this survey, we are the first to propose a unified taxonomy for classifying the metrics and approaches of diversification in both search and recommendation, which are two of the most extensively researched fields of retrieval systems. We begin the survey with a brief discussion of why diversity is important in retrieval systems
Survey of Scientific Rigor Studied in Machine Learning
D. Sculley
Gary R. Holt
Daniel R. Golovin
Eugene V. Davydov
Todd Phillips
Dietmar Ebner
Michael Young
Jean-francois Crespo
Dan Dennison
Emily Fox
The concern that Artificial Intelligence (AI) and Machine Learning (ML) are entering a “reproducibility crisis” has spurred significant … (see more)research in the past few years. Yet with each paper, it is often unclear what someone means by “reproducibility” and where it fits in the larger scope of what we will call the “scientific rigor” literature. Ultimately, the lack of clear rigor standards can affect the manner in which businesses seeking to adopt AI/ML implement such capabilities. In this survey, we will use 66 papers published since 2017 to construct a proposed set of 8 high-level categories of scientific rigor, what they are, and the history of work conducted in each. Our proposal is that these eight rigor types are not mutually exclusive and present a model for how they influence each other. To encourage more to study these questions, we map these rigors to the adoption process in real-world business use cases. In doing so, we can quantify gaps in the literature that suggest an under focus on the issues necessary for scientific rigor research to transition to practice
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
Tristan Deleu
Divyat Mahajan
Quentin Bertrand
Although disentangled representations are often said to be beneficial for downstream tasks, current empirical and theoretical understanding … (see more)is limited. In this work, we provide evidence that disentangled representations coupled with sparse base-predictors improve generalization. In the context of multi-task learning, we prove a new identifiability result that provides conditions under which maximally sparse base-predictors yield disentangled representations. Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of this algorithm based on group Lasso multiclass SVM base-predictors, for which we derive a tractable dual formulation. It obtains competitive results on standard few-shot classification benchmarks, while each task is using only a fraction of the learned representations.
Synergies between Disentanglement and Sparsity: Generalization and Identifiability in Multi-Task Learning
Sébastien Lachapelle
Tristan Deleu
Divyat Mahajan
Quentin Bertrand
Although disentangled representations are often said to be beneficial for downstream tasks, current empirical and theoretical understanding … (see more)is limited. In this work, we provide evidence that disentangled representations coupled with sparse task-specific predictors improve generalization. In the context of multi-task learning, we prove a new identifiability result that provides conditions under which maximally sparse predictors yield disentangled representations. Motivated by this theoretical result, we propose a practical approach to learn disentangled representations based on a sparsity-promoting bi-level optimization problem. Finally, we explore a meta-learning version of this algorithm based on group Lasso multiclass SVM predictors, for which we derive a tractable dual formulation. It obtains competitive results on standard few-shot classification benchmarks, while each task is using only a fraction of the learned representations.
Syntactic Substitutability as Unsupervised Dependency Syntax
Jasper Jian
Technology-enhanced trauma training in low-resource settings: A scoping review and feasibility analysis of educational technologies.
Minahil Khan
Fabio Botelho
Laura Pinkham
Elena Guadagno
Temporal Abstraction in Reinforcement Learning with the Successor Representation
Marlos C. Machado
Andre Barreto
Michael Bowling
Test-time Defense against Adversarial Attacks: Detection and Reconstruction of Adversarial Examples via Masked Autoencoder
Yun-Yun Tsai
Ju-Chin Chao
Albert Wen
Zhaoyuan Yang
Chengzhi Mao
Tapan Shah
Junfeng Yang
Existing defense methods against adversarial attacks can be categorized into training time and test time defenses. Training time defense, i.… (see more)e., adversarial training, requires a significant amount of extra time for training and is often not able to be generalized to unseen attacks. On the other hand, test time defense by test time weight adaptation requires access to perform gradient descent on (part of) the model weights, which could be infeasible for models with frozen weights. To address these challenges, we propose DRAM, a novel defense method to Detect and Reconstruct the multiple types of Adversarial attacks via Masked autoencoder (MAE). We demonstrate how to use MAE losses to build a KS-test to detect adversarial attacks. Moreover, the MAE losses can be used to repair adversarial samples from unseen attack types. In this sense, DRAM neither requires model weight updates in test time nor augments the training set with more adversarial samples. Evaluating DRAM on the large-scale ImageNet data, we achieve the best detection rate of 82% on average on eight types of adversarial attacks compared with other detection baselines. For reconstruction, DRAM improves the robust accuracy by 6% ∼ 41% for Standard ResNet50 and 3% ∼ 8% for Robust ResNet50 compared with other self-supervision tasks, such as rotation prediction and contrastive learning.