Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs)… (see more), introduces StarCoder and StarCoderBase: 15.5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention. StarCoderBase is trained on 1 trillion tokens sourced from The Stack, a large collection of permissively licensed GitHub repositories with inspection tools and an opt-out process. We fine-tuned StarCoderBase on 35B Python tokens, resulting in the creation of StarCoder. We perform the most comprehensive evaluation of Code LLMs to date and show that StarCoderBase outperforms every open Code LLM that supports multiple programming languages and matches or outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder outperforms every model that is fine-tuned on Python and still retains its performance on other programming languages. We take several important steps towards a safe open-access model release, including an improved PII redaction pipeline and a novel attribution tracing tool, and make the StarCoder models publicly available under a more commercially viable version of the Open Responsible AI Model license.
Scalable Vector Graphics (SVGs) are vital for modern image rendering due to their scalability and versatility. Previous SVG generation metho… (see more)ds have focused on curve-based vectorization, lacking semantic understanding, often producing artifacts, and struggling with SVG primitives beyond path curves. To address these issues, we introduce StarVector, a multimodal large language model for SVG generation. It performs image vectorization by understanding image semantics and using SVG primitives for compact, precise outputs. Unlike traditional methods, StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. To train StarVector, we create SVG-Stack, a diverse dataset of 2M samples that enables generalization across vectorization tasks and precise use of primitives like ellipses, polygons, and text. We address challenges in SVG evaluation, showing that pixel-based metrics like MSE fail to capture the unique qualities of vector graphics. We introduce SVG-Bench, a benchmark across 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG generation, and diagram generation. Using this setup, StarVector achieves state-of-the-art performance, producing more compact and semantically rich SVGs.
Scalable Vector Graphics (SVGs) are vital for modern image rendering due to their scalability and versatility. Previous SVG generation metho… (see more)ds have focused on curve-based vectorization, lacking semantic understanding, often producing artifacts, and struggling with SVG primitives beyond path curves. To address these issues, we introduce StarVector, a multimodal large language model for SVG generation. It performs image vectorization by understanding image semantics and using SVG primitives for compact, precise outputs. Unlike traditional methods, StarVector works directly in the SVG code space, leveraging visual understanding to apply accurate SVG primitives. To train StarVector, we create SVG-Stack, a diverse dataset of 2M samples that enables generalization across vectorization tasks and precise use of primitives like ellipses, polygons, and text. We address challenges in SVG evaluation, showing that pixel-based metrics like MSE fail to capture the unique qualities of vector graphics. We introduce SVG-Bench, a benchmark across 10 datasets, and 3 tasks: Image-to-SVG, Text-to-SVG generation, and diagram generation. Using this setup, StarVector achieves state-of-the-art performance, producing more compact and semantically rich SVGs.
Speech Emotion Recognition (SER) typically relies on utterance-level solutions. However, emotions conveyed through speech should be consider… (see more)ed as discrete speech events with definite temporal boundaries, rather than attributes of the entire utterance. To reflect the fine-grained nature of speech emotions and to unify various fine-grained methods under a single objective, we propose a new task: Speech Emotion Diarization (SED). Just as Speaker Diarization answers the question of “Who speaks when?”, Speech Emotion Diarization answers the question of “Which emotion appears when?”. To facilitate the evaluation of the performance and establish a common benchmark, we introduce the Zaion Emotion Dataset (ZED), an openly accessible speech emotion dataset that includes non-acted emotions recorded in real-life conditions, along with manually annotated boundaries of emotion segments within the utterance. We provide competitive baselines and open-source the code and the pre-trained models.
2023-12-16
2023 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU) (published)
Forests are an essential part of Earth's ecosystems and natural systems, as well as providing services on which humanity depends, yet they a… (see more)re rapidly changing as a result of land use decisions and climate change. Understanding and mitigating negative effects requires parsing data on forests at global scale from a broad array of sensory modalities, and recently many such problems have been approached using machine learning algorithms for remote sensing. To date, forest-monitoring problems have largely been addressed in isolation. Inspired by the rise of foundation models for computer vision and remote sensing, we here present the first unified Forest Monitoring Benchmark (FoMo-Bench). FoMo-Bench consists of 15 diverse datasets encompassing satellite, aerial, and inventory data, covering a variety of geographical regions, and including multispectral, red-green-blue, synthetic aperture radar (SAR) and LiDAR data with various temporal, spatial and spectral resolutions. FoMo-Bench includes multiple types of forest-monitoring tasks, spanning classification, segmentation, and object detection. To further enhance the diversity of tasks and geographies represented in FoMo-Bench, we introduce a novel global dataset, TalloS, combining satellite imagery with ground-based annotations for tree species classification, encompassing 1,000+ categories across multiple hierarchical taxonomic levels (species, genus, family). Finally, we propose FoMo-Net, a baseline foundation model with the capacity to process any combination of commonly used spectral bands in remote sensing, across diverse ground sampling distances and geographical locations worldwide. This work aims to inspire research collaborations between machine learning and forest biology researchers in exploring scalable multi-modal and multi-task models for forest monitoring. All code and data will be made publicly available.
Single-cell multi-omics illuminate intricate cellular states, yielding transformative insights into cellular dynamics and disease. Yet, whil… (see more)e the potential of this technology is vast, the integration of its multifaceted data presents challenges. Some modalities have not reached the robustness or clarity of established scRNA-seq. Coupled with data scarcity for newer modalities and integration intricacies, these challenges limit our ability to maximize single-cell omics benefits. We introduce scCross: a tool adeptly engineered using variational autoencoder, generative adversarial network principles, and the Mutual Nearest Neighbors (MNN) technique for modality alignment. This synergy ensures seamless integration of varied single-cell multi-omics data. Beyond its foundational prowess in multi-omics data integration, scCross excels in single-cell cross-modal data generation, multi-omics data simulation, and profound in-silico cellular perturbations. Armed with these capabilities, scCross is set to transform the field of single-cell research, establishing itself in the nuanced integration, generation, and simulation of complex multi-omics data.
While signed distance fields (SDFs) in theory offer infinite level of detail, they are typically rendered using the sphere tracing algorithm… (see more) at finite resolutions, which causes the common rasterized image synthesis problem of aliasing. Most existing optimized antialiasing solutions rely on polygon mesh representations; SDF-based geometry can only be directly antialiased with the computationally expensive supersampling or with post-processing filters that may produce undesirable blurriness and ghosting. In this work, we present cone-traced supersampling (CTSS), an efficient and robust spatial antialiasing solution that naturally complements the sphere tracing algorithm, does not require casting additional rays per pixel or offline prefiltering, and can be easily implemented in existing real-time SDF renderers. CTSS performs supersampling along the traced ray near surfaces with partial visibility – object contours – identified by evaluating cone intersections within a pixel's view frustum. We further introduce subpixel edge reconstruction (SER), a technique that extends CTSS to locate and resolve complex pixels with geometric edges in relatively flat regions, which are otherwise undetected by cone intersections. Our combined solution relies on a specialized sampling strategy to minimize the number of shading computations and correlates sample visibility to aggregate the samples. With comparable antialiasing quality at significantly lower computational cost, CTSS is a reliable practical alternative to conventional supersampling.
2023-12-14
IEEE Transactions on Visualization and Computer Graphics (published)