Multi-resolution Time-Series Transformer for Long-term Forecasting
Yitian Zhang
Liheng Ma
Soumyasundar Pal
Yingxue Zhang
Simulating weighted automata over sequences and trees with transformers
Michael Rizvi-Martel
Maude Lizaire
Clara Lacroce
Tackling the XAI Disagreement Problem with Regional Explanations
gabriel laberge
Yann Batiste Pequignot
Mario Marchand
On the Privacy of Selection Mechanisms with Gaussian Noise
Jonathan Lebensold
Borja Balle
Report Noisy Max and Above Threshold are two classical differentially private (DP) selection mechanisms. Their output is obtained by adding … (see more)noise to a sequence of low-sensitivity queries and reporting the identity of the query whose (noisy) answer satisfies a certain condition. Pure DP guarantees for these mechanisms are easy to obtain when Laplace noise is added to the queries. On the other hand, when instantiated using Gaussian noise, standard analyses only yield approximate DP guarantees despite the fact that the outputs of these mechanisms lie in a discrete space. In this work, we revisit the analysis of Report Noisy Max and Above Threshold with Gaussian noise and show that, under the additional assumption that the underlying queries are bounded, it is possible to provide pure ex-ante DP bounds for Report Noisy Max and pure ex-post DP bounds for Above Threshold. The resulting bounds are tight and depend on closed-form expressions that can be numerically evaluated using standard methods. Empirically we find these lead to tighter privacy accounting in the high privacy, low data regime. Further, we propose a simple privacy filter for composing pure ex-post DP guarantees, and use it to derive a fully adaptive Gaussian Sparse Vector Technique mechanism. Finally, we provide experiments on mobility and energy consumption datasets demonstrating that our Sparse Vector Technique is practically competitive with previous approaches and requires less hyper-parameter tuning.
Weight-Sharing Regularization
Mehran Shakerinava
Motahareh Sohrabi
Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences
Shreya Shankar
J.D. Zamfirescu-Pereira
Bjorn Hartmann
Aditya G Parameswaran
Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly bei… (see more)ng used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub \emph{criteria drift}: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears \emph{dependent} on the specific LLM outputs observed (rather than independent criteria that can be defined \emph{a priori}), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.
Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences
Shreya Shankar
J.D. Zamfirescu-Pereira
Bjorn Hartmann
Aditya G Parameswaran
Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly bei… (see more)ng used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub \emph{criteria drift}: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears \emph{dependent} on the specific LLM outputs observed (rather than independent criteria that can be defined \emph{a priori}), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.
Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences
Shreya Shankar
J.D. Zamfirescu-Pereira
Bjorn Hartmann
Aditya G Parameswaran
Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly bei… (see more)ng used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub \emph{criteria drift}: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears \emph{dependent} on the specific LLM outputs observed (rather than independent criteria that can be defined \emph{a priori}), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.
Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences
Shreya Shankar
J.D. Zamfirescu-Pereira
Bjorn Hartmann
Aditya G Parameswaran
Who Validates the Validators? Aligning LLM-Assisted Evaluation of LLM Outputs with Human Preferences
Shreya Shankar
J.D. Zamfirescu-Pereira
Bjorn Hartmann
Aditya G Parameswaran
Due to the cumbersome nature of human evaluation and limitations of code-based evaluation, Large Language Models (LLMs) are increasingly bei… (see more)ng used to assist humans in evaluating LLM outputs. Yet LLM-generated evaluators simply inherit all the problems of the LLMs they evaluate, requiring further human validation. We present a mixed-initiative approach to ``validate the validators'' -- aligning LLM-generated evaluation functions (be it prompts or code) with human requirements. Our interface, EvalGen, provides automated assistance to users in generating evaluation criteria and implementing assertions. While generating candidate implementations (Python functions, LLM grader prompts), EvalGen asks humans to grade a subset of LLM outputs; this feedback is used to select implementations that better align with user grades. A qualitative study finds overall support for EvalGen but underscores the subjectivity and iterative process of alignment. In particular, we identify a phenomenon we dub \emph{criteria drift}: users need criteria to grade outputs, but grading outputs helps users define criteria. What is more, some criteria appears \emph{dependent} on the specific LLM outputs observed (rather than independent criteria that can be defined \emph{a priori}), raising serious questions for approaches that assume the independence of evaluation from observation of model outputs. We present our interface and implementation details, a comparison of our algorithm with a baseline approach, and implications for the design of future LLM evaluation assistants.
Asynchronous Algorithmic Alignment with Cocycles
Andrew Joseph Dudzik
Tamara von Glehn
Petar Veličković
State-of-the-art neural algorithmic reasoners make use of message passing in graph neural networks (GNNs). But typical GNNs blur the distinc… (see more)tion between the definition and invocation of the message function, forcing a node to send messages to its neighbours at every layer, synchronously. When applying GNNs to learn to execute dynamic programming algorithms, however, on most steps only a handful of the nodes would have meaningful updates to send. One, hence, runs the risk of inefficiencies by sending too much irrelevant data across the graph. But more importantly, many intermediate GNN steps have to learn the identity functions, which is a non-trivial learning problem. In this work, we explicitly separate the concepts of node state update and message function invocation. With this separation, we obtain a mathematical formulation that allows us to reason about asynchronous computation in both algorithms and neural networks. Our analysis yields several practical implementations of synchronous scalable GNN layers that are provably invariant under various forms of asynchrony.
Effects of gene dosage on cognitive ability: A function-based association study across brain and non-brain processes
Guillaume Huguet
Thomas Renne
Cécile Poulain
Alma Dubuc
Kuldeep Kumar
Sayeh Kazem
Worrawat Engchuan
Omar Shanta
Elise Douard
Catherine Proulx
Martineau Jean-Louis
Zohra Saci
Josephine Mollon
Laura Schultz
Emma E M Knowles
Simon R. Cox
David Porteous
Gail Davies
Paul Redmond
Sarah E. Harris … (see 10 more)
Gunter Schumann
Aurélie Labbe
Zdenka Pausova
Tomas Paus
Stephen W Scherer
Jonathan Sebat
Laura Almasy
David C. Glahn
Sébastien Jacquemont
Genomic Copy Number Variants (CNVs) that increase risk for neurodevelopmental disorders are also associated with lower cognitive ability in … (see more)general population cohorts. Studies have focussed on a small set of recurrent CNVs, but burden analyses suggested that the vast majority of CNVs affecting cognitive ability are too rare to reach variant-level association. As a result, the full range of gene-dosage-sensitive biological processes linked to cognitive ability remains unknown. To investigate this issue, we identified all CNVs >50 kilobases in 258k individuals from 6 general population cohorts with assessments of general cognitive abilities. We performed a CNV-GWAS and functional burden analyses, which tested 6502 gene-sets defined by tissue and cell-type transcriptomics as well as gene ontology disrupted by all rare coding CNVs. CNV-GWAS identified a novel duplication at 2q12.3 associated with higher performance in cognitive ability. Among the 864 gene-sets associated with cognitive ability, only 11% showed significant effects for both deletions and duplication. Accordingly, we systematically observed negative correlations between deletion and duplication effect sizes across all levels of biological observations. We quantified the preferential effects of deletions versus duplication using tagDS, a new normalized metric. Cognitive ability was preferentially affected by cortical, presynaptic, and negative-regulation gene-sets when duplicated. In contrast, preferential effects of deletions were observed for subcortical, post-synaptic, and positive-regulation gene-sets. A large proportion of gene-sets assigned to non-brain organs were associated with cognitive ability due to low tissue specificity genes, which were associated with higher sensitive to haploinsufficiency. Overall, most biological functions associated with cognitive ability are divided into those sensitive to either deletion or duplications.