Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
ToxiSight: Insights Towards Detected Chat Toxicity
We present a comprehensive explainability dashboard designed for in-game chat toxicity. This dashboard integrates various existing explainab… (see more)le AI (XAI) techniques, including token importance analysis, model output visualization, and attribution to the training dataset. It also provides insights through the closest positive and negative examples, facilitating a deeper understanding and potential correction of the training data. Additionally, the dashboard includes word sense analysis—particularly useful for new moderators—and offers free-text explanations for both positive and negative predictions. This multi-faceted approach enhances the interpretability and transparency of toxicity detection models.
As large language models (LLMs) advance, their potential applications have grown significantly. However, it remains difficult to evaluate LL… (see more)M behavior on user-specific tasks and craft effective pipelines to do so. Many users struggle with where to start, often referred to as the"blank page"problem. ChainBuddy, an AI assistant for generating evaluative LLM pipelines built into the ChainForge platform, aims to tackle this issue. ChainBuddy offers a straightforward and user-friendly way to plan and evaluate LLM behavior, making the process less daunting and more accessible across a wide range of possible tasks and use cases. We report a within-subjects user study comparing ChainBuddy to the baseline interface. We find that when using AI assistance, participants reported a less demanding workload and felt more confident setting up evaluation pipelines of LLM behavior. We derive insights for the future of interfaces that assist users in the open-ended evaluation of AI.
Despite recent advances in training and prompting strategies for Large Language Models (LLMs), these models continue to face challenges with… (see more) complex logical reasoning tasks that involve long reasoning chains. In this work, we explore the potential and limitations of using graph-based synthetic reasoning data as training signals to enhance LLMs' reasoning capabilities. Our extensive experiments, conducted on two established natural language reasoning tasks -- inductive reasoning and spatial reasoning -- demonstrate that supervised fine-tuning (SFT) with synthetic graph-based reasoning data effectively enhances LLMs' reasoning performance without compromising their effectiveness on other standard evaluation benchmarks.