We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
scHiCyclePred: a deep learning framework for predicting cell cycle phases from single-cell Hi-C data using multi-scale interaction information
Dark matter structures within strong gravitational lens galaxies and along their line of sight leave a gravitational imprint on the multiple… (see more) images of lensed sources. Strong gravitational lensing provides, therefore, a key test of different dark matter models in a way that is independent of the baryonic content of matter structures on subgalactic scales. In this chapter, we describe how galaxy-scale strong gravitational lensing observations are sensitive to the physical nature of dark matter. We provide a historical perspective of the field, and review its current status. We discuss the challenges and advances in terms of data, treatment of systematic errors and theoretical predictions, that will enable one to deliver a stringent and robust test of different dark matter models in the near future. With the advent of the next generation of sky surveys, the number of known strong gravitational lens systems is expected to increase by several orders of magnitude. Coupled with high-resolution follow-up observations, these data will provide a key opportunity to constrain the properties of dark matter with strong gravitational lensing.
The integration of artificial intelligence (AI) into microscopy systems significantly enhances performance, optimizing both the image acquis… (see more)ition and analysis phases. Development of AI-assisted super-resolution microscopy is often limited by the access to large biological datasets, as well as by the difficulties to benchmark and compare approaches on heterogeneous samples. We demonstrate the benefits of a realistic STED simulation platform, pySTED, for the development and deployment of AI-strategies for super-resolution microscopy. The simulation environment provided by pySTED allows the augmentation of data for the training of deep neural networks, the development of online optimization strategies, and the training of reinforcement learning models, that can be deployed successfully on a real microscope.
The Bayesian approach leads to coherent updates of predictions under new data, which makes adhering to Bayesian principles appealing in deci… (see more)sion-making contexts. Traditionally, integrating Bayesian principles into models like deep neural networks involves setting priors on parameters and approximating posteriors. This is done despite the fact that, typically, priors on parameters reflect any prior beliefs only insofar as they dictate function space behaviour. In this paper, we rethink this approach and consider what properties characterise a prediction rule as being Bayesian. Algorithms meeting such criteria can be deemed implicitly Bayesian — they make the same predictions as some Bayesian model, without explicitly manifesting priors and posteriors. We argue this might be a more fruitful approach towards integrating Bayesian principles into deep learning. In this paper, we propose how to measure how close a general prediction rule is to being implicitly Bayesian, and empirically evaluate multiple prediction strategies using our approach. We also show theoretically that agents relying on non-implicitly Bayesian prediction rules can be easily exploited in adversarial betting settings.
2024-07-29
Proceedings of the 6th Symposium on Advances in Approximate Bayesian Inference (published)