Publications

Latent Space Evolution under Incremental Learning with Concept Drift (Student Abstract)
Charles Bourbeau
This work investigates the evolution of latent space when deep learning models are trained incrementally in non-stationary environments that… (see more) stem from concept drift. We propose a methodology for visualizing the incurred change in latent representations. We further show that classes not targeted by concept drift can be negatively affected, suggesting that the observation of all classes during learning may regularize the latent space.
Signed Laplacian Graph Neural Networks
Yu Li
Meng Qu
Yi Chang
The Effect of diversity in Meta-Learning
Ramnath Kumar
Tristan Deleu
Few-shot learning aims to learn representations that can tackle novel tasks given a small number of examples. Recent studies show that task … (see more)distribution plays a vital role in the performance of the model. Conventional wisdom is that task diversity should improve the performance of meta-learning. In this work, we find evidence to the contrary; we study different task distributions on a myriad of models and datasets to evaluate the effect of task diversity on meta-learning algorithms. For this experiment, we train on multiple datasets, and with three broad classes of meta-learning models - Metric-based (i.e., Protonet, Matching Networks), Optimization-based (i.e., MAML, Reptile, and MetaOptNet), and Bayesian meta-learning models (i.e., CNAPs). Our experiments demonstrate that the effect of task diversity on all these algorithms follows a similar trend, and task diversity does not seem to offer any benefits to the learning of the model. Furthermore, we also demonstrate that even a handful of tasks, repeated over multiple batches, would be sufficient to achieve a performance similar to uniform sampling and draws into question the need for additional tasks to create better models.
Partial Ordered Statistics Decoding with Enhanced Error Patterns
Marwan Jalaleddine
Huayi Zhou
Jiajie Li
Guessing Random Additive Noise Decoding (GRAND) excels at decoding high-rate codes but struggles to decode low-rate codes with reasonable co… (see more)mplexity. Ordered Statistics Decoding (OSD) specifically excels in decoding short codes irrespective of rates; however, OSD necessitates the use of Gaussian elimination which introduces additional time, space and computational complexity. Partial Ordered Statistics Decoding (POSD) was proposed to reduce the time, space, and computational complexity of OSD; however, the current partition-based POSD has poor decoding performance since it does not generate test error patterns across partitions. In this paper, we propose to improve the decoding performance of POSD by incorporating test error patterns inspired by GRAND methods. This work offers a trade-off between performance and complexity compared to existing decoders such as GRAND and OSD. We enhance POSD by optimizing the scheduling of Test Error Patterns (TEPs) and show that our technique can be applied to any code in a standard form. At a target BER 10−4 with eBCH (128,64) the enhanced error patterns achieve more than 0.6 dB gain in performance compared to the POSD with partition-based error patterns. Moreover, at a target frame error rate of 10−5, POSD uses 10× less binary operations compared to GRAND when decoding eBCH (128,64) and RLC(128,64) codes. With BCH (127,29) and RLC(128,32), at a target frame error rate of 10−2, POSD with enhanced error patterns with a maximum number of queries (MQ) of 104 achieves up to a 2 dB gain to its GRAND equivalent which is using 107 maximum number of queries.
CeBed: A Benchmark for Deep Data-Driven OFDM Channel Estimation
Amal Feriani
Di Wu
Steve Liu
Goal-conditioned GFlowNets for Controllable Multi-Objective Molecular Design
Julien Roy
Emmanuel Bengio
In recent years, in-silico molecular design has received much attention from the machine learning community. When designing a new compound f… (see more)or pharmaceutical applications, there are usually multiple properties of such molecules that need to be optimised: binding energy to the target, synthesizability, toxicity, EC50, and so on. While previous approaches have employed a scalarization scheme to turn the multi-objective problem into a preference-conditioned single objective, it has been established that this kind of reduction may produce solutions that tend to slide towards the extreme points of the objective space when presented with a problem that exhibits a concave Pareto front. In this work we experiment with an alternative formulation of goal-conditioned molecular generation to obtain a more controllable conditional model that can uniformly explore solutions along the entire Pareto front.
Using modular connectome-based predictive modeling to reveal brain-behavior relationships of individual differences in working memory
Huayi Yang
Junjun Zhang
Zhenlan Jin
Ling Li
Accelerating exploration and representation learning with offline pre-training
Bogdan Mazoure
Jake Bruce
Rob Fergus
Ankit Anand
Sequential decision-making agents struggle with long horizon tasks, since solving them requires multi-step reasoning. Most reinforcement lea… (see more)rning (RL) algorithms address this challenge by improved credit assignment, introducing memory capability, altering the agent's intrinsic motivation (i.e. exploration) or its worldview (i.e. knowledge representation). Many of these components could be learned from offline data. In this work, we follow the hypothesis that exploration and representation learning can be improved by separately learning two different models from a single offline dataset. We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward separately from a single collection of human demonstrations can significantly improve the sample efficiency on the challenging NetHack benchmark. We also ablate various components of our experimental setting and highlight crucial insights.
Accelerating Generalized Random Forests with Fixed-Point Trees
David L. Fleischer
David A. Stephens
Cognitive Models as Simulators: Using Cognitive Models to Tap into Implicit Human Feedback
Ardavan S. Nobandegani
Thomas Shultz
Constant Memory Attention Block
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Mohamed Osama Ahmed
Continual Pre-Training of Large Language Models: How to (re)warm your model?
Kshitij Gupta
Benjamin Thérien
Adam Ibrahim
Mats Leon Richter
Quentin Gregory Anthony
Timothee LESORT
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to restart the process over again once new data becomes a… (see more)vailable. A much cheaper and more efficient solution would be to enable the continual pre-training of these models, i.e. updating pre-trained models with new data instead of re-training them from scratch. However, the distribution shift induced by novel data typically results in degraded performance on past data. Taking a step towards efficient continual pre-training, in this work, we examine the effect of different warm-up strategies. Our hypothesis is that the learning rate must be re-increased to improve compute efficiency when training on a new dataset. We study the warmup phase of models pre-trained on the Pile (upstream data, 300B tokens) as we continue to pre-train on SlimPajama (downstream data, 297B tokens), following a linear warmup and cosine decay schedule. We conduct all experiments on the Pythia 410M language model architecture and evaluate performance through validation perplexity. We experiment with different pre-training checkpoints, various maximum learning rates, and various warmup lengths. Our results show that while rewarming models first increases the loss on upstream and downstream data, in the longer run it improves the downstream performance, outperforming models trained from scratch