Publications

Differentiable visual computing for inverse problems and machine learning
Andrew Spielberg
Fangcheng Zhong
Konstantinos Rematas
Krishna Murthy
Cengiz Oztireli
Tzu-Mao Li
AfriMTE and AfriCOMET: Enhancing COMET to Embrace Under-resourced African Languages
Jiayi Wang
Sweta Agrawal
Marek Masiak
Ricardo Rei
Eleftheria Briakou
Marine Carpuat
Xuanli He
Sofia Bourhim
Andiswa Bukula
Muhidin A. Mohamed
Temitayo Olatoye
Tosin Adewumi
Hamam Mokayede
Christine Mwase
Wangui Kimotho
Foutse Yuehgoh
Aremu Anuoluwapo
Jessica Ojo
Shamsuddeen Hassan Muhammad … (see 38 more)
Salomey Osei
Abdul-Hakeem Omotayo
Chiamaka Ijeoma Chukwuneke
Perez Ogayo
Oumaima Hourrane
Salma El Anigri
Lolwethu Ndolela
Thabiso Mangwana
Shafie Abdi Mohamed
Ayinde Hassan
Oluwabusayo Olufunke Awoyomi
Lama Alkhaled
sana Sabah al-azzawi
Naome A. Etori
Millicent A. Ochieng
Clemencia Siro
Samuel Njoroge
Eric Muchiri
Wangari Kimotho
Lyse Naomi Wamba Momo
Daud Abolade
Simbiat Ajao
Iyanuoluwa Shode
Ricky Macharm
Ruqayya Nasir Iro
Saheed Salahudeen Abdullahi
Stephen E. Moore
Bernard Opoku
Zainab Akinjobi
Abeeb Afolabi
Nnaemeka Casmir Obiefuna
Onyekachi Ogbu
Sam Brian
Verrah Akinyi Otiende
CHINEDU EMMANUEL MBONU
Toadoum Sari Sakayo
Yao Lu
Pontus Stenetorp
Despite the recent progress on scaling multilingual machine translation (MT) to several under-resourced African languages, accurately measur… (see more)ing this progress remains challenging, since evaluation is often performed on n-gram matching metrics such as BLEU, which typically show a weaker correlation with human judgments. Learned metrics such as COMET have higher correlation; however, the lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with simplified MQM guidelines for error detection and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET: COMET evaluation metrics for African languages by leveraging DA data from well-resourced languages and an African-centric multilingual encoder (AfroXLM-R) to create the state-of-the-art MT evaluation metrics for African languages with respect to Spearman-rank correlation with human judgments (0.441).
Evaluating In-Context Learning of Libraries for Code Generation
Arkil Patel
Pradeep Dasigi
Generalizable Imitation Learning Through Pre-Trained Representations
Wei-Di Chang
Francois R. Hogan
In this paper we leverage self-supervised vision transformer models and their emergent semantic abilities to improve the generalization abil… (see more)ities of imitation learning policies. We introduce BC-ViT, an imitation learning algorithm that leverages rich DINO pre-trained Visual Transformer (ViT) patch-level embeddings to obtain better generalization when learning through demonstrations. Our learner sees the world by clustering appearance features into semantic concepts, forming stable keypoints that generalize across a wide range of appearance variations and object types. We show that this representation enables generalized behaviour by evaluating imitation learning across a diverse dataset of object manipulation tasks. Our method, data and evaluation approach are made available to facilitate further study of generalization in Imitation Learners.
Adaptive Integration of Categorical and Multi-relational Ontologies with EHR Data for Medical Concept Embedding
Chin Wang Cheong
Kejing Yin
William K. Cheung
Jonathan Poon
Using Representation Expressiveness and Learnability to Evaluate Self-Supervised Learning Methods
Yuchen Lu
Zhen Liu
Aristide Baratin
Romain Laroche
Language Model-In-The-Loop: Data Optimal Approach to Learn-To-Recommend Actions in Text Games
Arjun Vaithilingam Sudhakar
Prasanna Parthasarathi
Janarthanan Rajendran
Ex Post Conditions for the Exactness of Optimal Power Flow Conic Relaxations
Jean-Luc Lupien
Convex relaxations of the optimal power flow (OPF) problem provide an efficient alternative to solving the intractable alternating current (… (see more)AC) optimal power flow. The conic subset of OPF convex relaxations, in particular, greatly accelerate resolution while leading to high-quality approximations that are exact in several scenarios. However, the sufficient conditions guaranteeing exactness are stringent, e.g., requiring radial topologies. In this short communication, we present two equivalent ex post conditions for the exactness of any conic relaxation of the OPF. These rely on obtaining either a rank-1 voltage matrix or self-coherent cycles. Instead of relying on sufficient conditions a priori, satisfying one of the presented ex post conditions acts as an exactness certificate for the computed solution. The operator can therefore obtain an optimality guarantee when solving a conic relaxation even when a priori exactness requirements are not met. Finally, we present numerical examples from the MATPOWER library where the ex post conditions hold even though the exactness sufficient conditions do not, thereby illustrating the use of the conditions.
Bridging the Gap Between Offline and Online Reinforcement Learning Evaluation Methodologies
Shiva Kanth Sujit
Pedro Braga
Jorg Bornschein
Reinforcement learning (RL) has shown great promise with algorithms learning in environments with large state and action spaces purely from … (see more)scalar reward signals. A crucial challenge for current deep RL algorithms is that they require a tremendous amount of environment interactions for learning. This can be infeasible in situations where such interactions are expensive, such as in robotics. Offline RL algorithms try to address this issue by bootstrapping the learning process from existing logged data without needing to interact with the environment from the very beginning. While online RL algorithms are typically evaluated as a function of the number of environment interactions, there isn't a single established protocol for evaluating offline RL methods. In this paper, we propose a sequential approach to evaluate offline RL algorithms as a function of the training set size and thus by their data efficiency. Sequential evaluation provides valuable insights into the data efficiency of the learning process and the robustness of algorithms to distribution changes in the dataset while also harmonizing the visualization of the offline and online learning phases. Our approach is generally applicable and easy to implement. We compare several existing offline RL algorithms using this approach and present insights from a variety of tasks and offline datasets.
CD3ζ ITAMs enable ligand discrimination and antagonism by inhibiting TCR signaling in response to low-affinity peptides
Guillaume Gaud
Sooraj R. Achar
François X. P. Bourassa
John S. Davies
Teri Hatzihristidis
Seeyoung Choi
Taisuke Kondo
Selamawit Gossa
Jan Lee
Paul Juneau
Naomi Taylor
Christian S. Hinrichs
Dorian B. McGavern
Grégoire Altan-Bonnet
Paul E. Love
Stochastic Mirror Descent: Convergence Analysis and Adaptive Variants via the Mirror Stochastic Polyak Stepsize
Ryan D'Orazio
Nicolas Loizou
Issam Hadj Laradji
We investigate the convergence of stochastic mirror descent (SMD) under interpolation in relatively smooth and smooth convex optimization. I… (see more)n relatively smooth convex optimization we provide new convergence guarantees for SMD with a constant stepsize. For smooth convex optimization we propose a new adaptive stepsize scheme --- the mirror stochastic Polyak stepsize (mSPS). Notably, our convergence results in both settings do not make bounded gradient assumptions or bounded variance assumptions, and we show convergence to a neighborhood that vanishes under interpolation. Consequently, these results correspond to the first convergence guarantees under interpolation for the exponentiated gradient algorithm for fixed or adaptive stepsizes. mSPS generalizes the recently proposed stochastic Polyak stepsize (SPS) (Loizou et al. 2021) to mirror descent and remains both practical and efficient for modern machine learning applications while inheriting the benefits of mirror descent. We complement our results with experiments across various supervised learning tasks and different instances of SMD, demonstrating the effectiveness of mSPS.
Capture the Flag: Uncovering Data Insights with Large Language Models
Issam Hadj Laradji
Perouz Taslakian
Sai Rajeswar
Valentina Zantedeschi
Alexandre Lacoste
David Vazquez