Publications

Assessing Neural Network Representations During Training Using Noise-Resilient Diffusion Spectral Entropy
Danqi Liao
Chen Liu
Benjamin W Christensen
Alexander Tong
Guillaume Huguet
Maximilian Nickel
Ian Adelstein
Smita Krishnaswamy
Entropy and mutual information in neural networks provide rich information on the learning process, but they have proven difficult to comput… (see more)e reliably in high dimensions. Indeed, in noisy and high-dimensional data, traditional estimates in ambient dimensions approach a fixed entropy and are prohibitively hard to compute. To address these issues, we leverage data geometry to access the underlying manifold and reliably compute these information-theoretic measures. Specifically, we define diffusion spectral entropy (DSE) in neural representations of a dataset as well as diffusion spectral mutual information (DSMI) between different variables representing data. First, we show that they form noise-resistant measures of intrinsic dimensionality and relationship strength in high-dimensional simulated data that outperform classic Shannon entropy, nonparametric estimation, and mutual information neural estimation (MINE). We then study the evolution of representations in classification networks with supervised learning, self-supervision, or overfitting. We observe that (1) DSE of neural representations increases during training; (2) DSMI with the class label increases during generalizable learning but stays stagnant during overfitting; (3) DSMI with the input signal shows differing trends: on MNIST it increases, while on CIFAR-10 and STL-10 it decreases. Finally, we show that DSE can be used to guide better network initialization and that DSMI can be used to predict downstream classification accuracy across 962 models on ImageNet.
BAND: Biomedical Alert News Dataset
Zihao Fu
Meiru Zhang
Zaiqiao Meng
Yannan Shen
Anya Okhmatovskaia
Nigel Collier
Carbon capture, utilization and sequestration systems design and operation optimization: Assessment and perspectives of artificial intelligence opportunities
Eslam G. Al-sakkari
Ahmed Ragab Anwar Ragab
Daria Camilla Boffito
Mouloud Amazouz
Causal Adversarial Perturbations for Individual Fairness and Robustness in Heterogeneous Data Spaces
Ahmad-reza Ehyaei
Kiarash Mohammadi
Amir-Hossein Karimi
S. Samadi
Common Challenges of Deep Reinforcement Learning Applications Development: An Empirical Study
Mohammad Mehdi Morovati
Florian Tambon
Mina Taraghi
Amin Nikanjam
Connecting Weighted Automata, Tensor Networks and Recurrent Neural Networks through Spectral Learning
Consolidating Separate Degradations Model via Weights Fusion and Distillation
Dinesh Daultani
Real-world images prevalently contain different varieties of degradation, such as motion blur and luminance noise. Computer vision recogniti… (see more)on models trained on clean images perform poorly on degraded images. Previously, several works have explored how to perform image classification of degraded images while training a single model for each degradation. Nevertheless, it becomes challenging to host several degradation models for each degradation on limited hardware applications and to estimate degradation parameters correctly at the run-time. This work proposes a method for effectively combining several models trained separately on different degradations into a single model to classify images with different types of degradations. Our proposed method is four-fold: (1) train a base model on clean images, (2) fine-tune the base model in-dividually for all given image degradations, (3) perform a fusion of weights given the fine-tuned models for individual degradations, (4) perform fine-tuning on given task using distillation and cross-entropy loss. Our proposed method can outperform previous state-of-the-art methods of pretraining in out-of-distribution generalization based on degradations such as JPEG compression, salt-and-pepper noise, Gaussian blur, and additive white Gaussian noise by 2.5% on CIFAR-100 dataset and by 1.3% on CIFAR-10 dataset. Moreover, our proposed method can handle degra-dation used for training without any explicit information about degradation at the inference time. Code will be available at https://github.com/dineshdaultani/FusionDistill.
Deep reinforcement learning for continuous wood drying production line control
François-Alexandre Tremblay
Michael Morin
Philippe Marier
Jonathan Gaudreault
E(3)-Equivariant Mesh Neural Networks
Thuan N.a. Trang
Nhat-Khang Ngô
Daniel Levy
Thieu N. Vo
Truong Son Hy
Triangular meshes are widely used to represent three-dimensional objects. As a result, many recent works have addressed the need for geometr… (see more)ic deep learning on 3D meshes. However, we observe that the complexities in many of these architectures do not translate to practical performance, and simple deep models for geometric graphs are competitive in practice. Motivated by this observation, we minimally extend the update equations of E(n)-Equivariant Graph Neural Networks (EGNNs) (Satorras et al., 2021) to incorporate mesh face information and further improve it to account for long-range interactions through a hierarchy. The resulting architecture, Equivariant Mesh Neural Network (EMNN), outperforms other, more complicated equivariant methods on mesh tasks, with a fast run-time and no expensive preprocessing. Our implementation is available at https://github.com/HySonLab/EquiMesh.
An Exact Method for (Constrained) Assortment Optimization Problems with Product Costs
Markus Leitner
Roberto Roberti
Claudio Sole
Fairness Through Domain Awareness: Mitigating Popularity Bias For Music Discovery
Rebecca Salganik
As online music platforms grow, music recommender systems play a vital role in helping users navigate and discover content within their vast… (see more) musical databases. At odds with this larger goal, is the presence of popularity bias, which causes algorithmic systems to favor mainstream content over, potentially more relevant, but niche items. In this work we explore the intrinsic relationship between music discovery and popularity bias. To mitigate this issue we propose a domain-aware, individual fairness-based approach which addresses popularity bias in graph neural network (GNNs) based recommender systems. Our approach uses individual fairness to reflect a ground truth listening experience, i.e., if two songs sound similar, this similarity should be reflected in their representations. In doing so, we facilitate meaningful music discovery that is robust to popularity bias and grounded in the music domain. We apply our BOOST methodology to two discovery based tasks, performing recommendations at both the playlist level and user level. Then, we ground our evaluation in the cold start setting, showing that our approach outperforms existing fairness benchmarks in both performance and recommendation of lesser-known content. Finally, our analysis explains why our proposed methodology is a novel and promising approach to mitigating popularity bias and improving the discovery of new and niche content in music recommender systems.
Game Theoretical Formulation for Residential Community Microgrid via Mean Field Theory: Proof of Concept
Mohamad Aziz
Issmail ElHallaoui
Incentive-based demand response aggregators are widely recognized as a powerful strategy to increase the flexibility of residential communit… (see more)y MG (RCM) while allowing consumers’ assets to participate in the operation of the power system in critical peak times. RCM implementing demand response approaches are of high interest as collectively, they have a high impact on shaping the demand curve during peak time while providing a wide range of economic and technical benefits to consumers and utilities. The penetration of distributed energy resources such as battery energy storage and photovoltaic systems introduces additional flexibility to manage the community loads and increase revenue. This letter proposes a game theoretical formulation for an incentive-based residential community microgrid, where an incentive-based pricing mechanism is developed to encourage peak demand reduction and share the incentive demand curve with the residential community through the aggregator. The aggregator’s objective is to maximize the welfare of the residential community by finding the optimal community equilibrium electricity price. Each household communicates with each other and with the distributed system operator (DSO) through the aggregator and aims to minimize the local electricity cost.