Portrait of Foutse Khomh

Foutse Khomh

Associate Academic Member
Canada CIFAR AI Chair
Professor, Polytechnique Montréal, Department of Computer Engineering and Software Engineering


Foutse Khomh is a full professor of software engineering at Polytechnique Montréal, a Canada CIFAR AI Chair – Trustworthy Machine Learning Software Systems, and an FRQ-IVADO Research Chair in Software Quality Assurance for Machine Learning Applications. Khomh completed a PhD in software engineering at Université de Montréal in 2011, for which he received an Award of Excellence. He was also awarded a CS-Can/Info-Can Outstanding Young Computer Science Researcher Prize in 2019.

His research interests include software maintenance and evolution, machine learning systems engineering, cloud engineering, and dependable and trustworthy ML/AI. His work has received four Ten-year Most Influential Paper (MIP) awards, and six Best/Distinguished Paper Awards. He has served on the steering committee of numerous organizations in software engineering, including SANER (chair), MSR, PROMISE, ICPC (chair), and ICSME (vice-chair). He initiated and co-organized Polytechnique Montréal‘s Software Engineering for Machine Learning Applications (SEMLA) symposium and the RELENG (release engineering) workshop series.

Khomh co-founded the NSERC CREATE SE4AI: A Training Program on the Development, Deployment and Servicing of Artificial Intelligence-based Software Systems, and is a principal investigator for the DEpendable Explainable Learning (DEEL) project.

He also co-founded Confiance IA, a Quebec consortium focused on building trustworthy AI, and is on the editorial board of multiple international software engineering journals, including IEEE Software, EMSE and JSEP. He is a senior member of IEEE.

Current Students

Master's Research - Polytechnique Montréal
Master's Research - Polytechnique Montréal
Master's Research - Polytechnique Montréal
Master's Research - Polytechnique Montréal


GIST: Generated Inputs Sets Transferability in Deep Learning
Florian Tambon
Giuliano Antoniol
Characterizing and Classifying Developer Forum Posts with their Intentions
Xingfang Wu
Eric Laufer
Heng Li
Santhosh Srinivasan
Jayden Luo
With the rapid growth of the developer community, the amount of posts on online technical forums has been growing rapidly, which poses diffi… (see more)culties for users to filter useful posts and find important information. Tags provide a concise feature dimension for users to locate their interested posts and for search engines to index the most relevant posts according to the queries. However, most tags are only focused on the technical perspective (e.g., program language, platform, tool). In most cases, forum posts in online developer communities reveal the author's intentions to solve a problem, ask for advice, share information, etc. The modeling of the intentions of posts can provide an extra dimension to the current tag taxonomy. By referencing previous studies and learning from industrial perspectives, we create a refined taxonomy for the intentions of technical forum posts. Through manual labeling and analysis on a sampled post dataset extracted from online forums, we understand the relevance between the constitution of posts (code, error messages) and their intentions. Furthermore, inspired by our manual study, we design a pre-trained transformer-based model to automatically predict post intentions. The best variant of our intention prediction framework, which achieves a Micro F1-score of 0.589, Top 1-3 accuracy of 62.6% to 87.8%, and an average AUC of 0.787, outperforms the state-of-the-art baseline approach. Our characterization and automated classification of forum posts regarding their intentions may help forum maintainers or third-party tool developers improve the organization and retrieval of posts on technical forums. We have released our annotated dataset and codes in our supplementary material package.
Introducing v0.5 of the AI Safety Benchmark from MLCommons
Bertie Vidgen
Adarsh Agrawal
Ahmed M. Ahmed
Victor Akinwande
Namir Al-nuaimi
Najla Alfaraj
Elie Alhajjar
Lora Aroyo
Trupti Bavalatti
Borhane Blili-Hamelin
K. Bollacker
Rishi Bomassani
Marisa Ferrara Boston
Sim'eon Campos
Kal Chakra
Canyu Chen
Cody Coleman
Zacharie Delpierre Coudert
Leon Strømberg Derczynski
Debojyoti Dutta … (see 77 more)
Ian Eisenberg
James R. Ezick
Heather Frase
Brian Fuller
Ram Gandikota
Agasthya Gangavarapu
Ananya Gangavarapu
James Gealy
Rajat Ghosh
James Goel
Usman Gohar
Sujata Goswami
Scott A. Hale
Wiebke Hutiri
Joseph Marvin Imperial
Surgan Jandial
Nicholas C. Judd
Felix Juefei-Xu
Bhavya Kailkhura
Hannah Rose Kirk
Kevin Klyman
Chris Knotz
Michael Kuchnik
Shachi H. Kumar
Chris Lengerich
Bo Li
Zeyi Liao
Eileen Peters Long
Victor Lu
Yifan Mai
Priyanka Mary Mammen
Kelvin Manyeki
Sean McGregor
Virendra Mehta
Shafee Mohammed
Emanuel Moss
Lama Nachman
Dinesh Jinenhally Naganna
Amin Nikanjam
Besmira Nushi
Luis Oala
Iftach Orr
Alicia Parrish
Çigdem Patlak
William Pietri
Forough Poursabzi-Sangdeh
Eleonora Presani
Fabrizio Puletti
Paul Rottger
Saurav Sahay
Tim Santos
Nino Scherrer
Alice Schoenauer Sebag
Patrick Schramowski
Abolfazl Shahbazi
Vin Sharma
Xudong Shen
Vamsi Sistla
Leonard Tang
Davide Testuggine
Vithursan Thangarasa
Elizabeth A Watkins
Rebecca Weiss
Christoper A. Welty
Tyler Wilbers
Adina Williams
Carole-Jean Wu
Poonam Yadav
Xianjun Yang
Yi Zeng
Wenhui Zhang
Fedor Zhdanov
Jiacheng Zhu
Percy Liang
Peter Mattson
Joaquin Vanschoren
Machine Learning Robustness: A Primer
Houssem Ben Braiek
This chapter explores the foundational concept of robustness in Machine Learning (ML) and its integral role in establishing trustworthiness … (see more)in Artificial Intelligence (AI) systems. The discussion begins with a detailed definition of robustness, portraying it as the ability of ML models to maintain stable performance across varied and unexpected environmental conditions. ML robustness is dissected through several lenses: its complementarity with generalizability; its status as a requirement for trustworthy AI; its adversarial vs non-adversarial aspects; its quantitative metrics; and its indicators such as reproducibility and explainability. The chapter delves into the factors that impede robustness, such as data bias, model complexity, and the pitfalls of underspecified ML pipelines. It surveys key techniques for robustness assessment from a broad perspective, including adversarial attacks, encompassing both digital and physical realms. It covers non-adversarial data shifts and nuances of Deep Learning (DL) software testing methodologies. The discussion progresses to explore amelioration strategies for bolstering robustness, starting with data-centric approaches like debiasing and augmentation. Further examination includes a variety of model-centric methods such as transfer learning, adversarial training, and randomized smoothing. Lastly, post-training methods are discussed, including ensemble techniques, pruning, and model repairs, emerging as cost-effective strategies to make models more resilient against the unpredictable. This chapter underscores the ongoing challenges and limitations in estimating and achieving ML robustness by existing approaches. It offers insights and directions for future research on this crucial concept, as a prerequisite for trustworthy AI systems.
Bugs in Large Language Models Generated Code: An Empirical Study
Florian Tambon
Arghavan Moradi Dakhel
Amin Nikanjam
Michel C. Desmarais
Giuliano Antoniol
Trained Without My Consent: Detecting Code Inclusion In Language Models Trained on Code
Vahid Majdinasab
Amin Nikanjam
Code auditing ensures that the developed code adheres to standards, regulations, and copyright protection by verifying that it does not cont… (see more)ain code from protected sources. The recent advent of Large Language Models (LLMs) as coding assistants in the software development process poses new challenges for code auditing. The dataset for training these models is mainly collected from publicly available sources. This raises the issue of intellectual property infringement as developers' codes are already included in the dataset. Therefore, auditing code developed using LLMs is challenging, as it is difficult to reliably assert if an LLM used during development has been trained on specific copyrighted codes, given that we do not have access to the training datasets of these models. Given the non-disclosure of the training datasets, traditional approaches such as code clone detection are insufficient for asserting copyright infringement. To address this challenge, we propose a new approach, TraWiC; a model-agnostic and interpretable method based on membership inference for detecting code inclusion in an LLM's training dataset. We extract syntactic and semantic identifiers unique to each program to train a classifier for detecting code inclusion. In our experiments, we observe that TraWiC is capable of detecting 83.87% of codes that were used to train an LLM. In comparison, the prevalent clone detection tool NiCad is only capable of detecting 47.64%. In addition to its remarkable performance, TraWiC has low resource overhead in contrast to pair-wise clone detection that is conducted during the auditing process of tools like CodeWhisperer reference tracker, across thousands of code snippets.
ChatGPT vs LLaMA: Impact, Reliability, and Challenges in Stack Overflow Discussions
Leuson Da Silva
Jordan Samhi
Since its release in November 2022, ChatGPT has shaken up Stack Overflow, the premier platform for developers' queries on programming and so… (see more)ftware development. Demonstrating an ability to generate instant, human-like responses to technical questions, ChatGPT has ignited debates within the developer community about the evolving role of human-driven platforms in the age of generative AI. Two months after ChatGPT's release, Meta released its answer with its own Large Language Model (LLM) called LLaMA: the race was on. We conducted an empirical study analyzing questions from Stack Overflow and using these LLMs to address them. This way, we aim to (ii) measure user engagement evolution with Stack Overflow over time; (ii) quantify the reliability of LLMs' answers and their potential to replace Stack Overflow in the long term; (iii) identify and understand why LLMs fails; and (iv) compare LLMs together. Our empirical results are unequivocal: ChatGPT and LLaMA challenge human expertise, yet do not outperform it for some domains, while a significant decline in user posting activity has been observed. Furthermore, we also discuss the impact of our findings regarding the usage and development of new LLMs.
Deep Learning Model Reuse in the HuggingFace Community: Challenges, Benefit and Trends
Mina Taraghi
Gianolli Dorcelus
Armstrong Foundjem
Florian Tambon
The ubiquity of large-scale Pre-Trained Models (PTMs) is on the rise, sparking interest in model hubs, and dedicated platforms for hosting P… (see more)TMs. Despite this trend, a comprehensive exploration of the challenges that users encounter and how the community leverages PTMs remains lacking. To address this gap, we conducted an extensive mixed-methods empirical study by focusing on discussion forums and the model hub of HuggingFace, the largest public model hub. Based on our qualitative analysis, we present a taxonomy of the challenges and benefits associated with PTM reuse within this community. We then conduct a quantitative study to track model-type trends and model documentation evolution over time. Our findings highlight prevalent challenges such as limited guidance for beginner users, struggles with model output comprehensibility in training or inference, and a lack of model understanding. We also identified interesting trends among models where some models maintain high upload rates despite a decline in topics related to them. Additionally, we found that despite the introduction of model documentation tools, its quantity has not increased over time, leading to difficulties in model comprehension and selection among users. Our study sheds light on new challenges in reusing PTMs that were not reported before and we provide recommendations for various stakeholders involved in PTM reuse.
Towards Enhancing the Reproducibility of Deep Learning Bugs: An Empirical Study
Mehil B. Shah
Mohammad Masudur Rahman
AITA: AI trustworthiness assessment
Bertrand Braunschweig
Stefan Buijsman
Faicel Chamroukhi
Fredrik Heintz
Juliette Mattioli
Maximilian Poretschkin
Common Challenges of Deep Reinforcement Learning Applications Development: An Empirical Study
Mohammad Mehdi Morovati
Florian Tambon
Mina Taraghi
Amin Nikanjam
Harnessing Pre-trained Generalist Agents for Software Engineering Tasks
Paulina Stevia Nouwou Mindom
Amin Nikanjam
Nowadays, we are witnessing an increasing adoption of Artificial Intelligence (AI) to develop techniques aimed at improving the reliability,… (see more) effectiveness, and overall quality of software systems. Deep reinforcement learning (DRL) has recently been successfully used for automation in complex tasks such as game testing and solving the job-shop scheduling problem. However, these specialized DRL agents, trained from scratch on specific tasks, suffer from a lack of generalizability to other tasks and they need substantial time to be developed and re-trained effectively. Recently, DRL researchers have begun to develop generalist agents, able to learn a policy from various environments and capable of achieving performances similar to or better than specialist agents in new tasks. In the Natural Language Processing or Computer Vision domain, these generalist agents are showing promising adaptation capabilities to never-before-seen tasks after a light fine-tuning phase and achieving high performance. This paper investigates the potential of generalist agents for solving SE tasks. Specifically, we conduct an empirical study aimed at assessing the performance of two generalist agents on two important SE tasks: the detection of bugs in games (for two games) and the minimization of makespan in a scheduling task, to solve the job-shop scheduling problem (for two instances). Our results show that the generalist agents outperform the specialist agents with very little effort for fine-tuning, achieving a 20% reduction of the makespan over specialized agent performance on task-based scheduling. In the context of game testing, some generalist agent configurations detect 85% more bugs than the specialist agents. Building on our analysis, we provide recommendations for researchers and practitioners looking to select generalist agents for SE tasks, to ensure that they perform effectively.