Publications

Optimal Local and Remote Controllers With Unreliable Uplink Channels: An Elementary Proof
Mohammad Afshari
Recently, a model of a decentralized control system with local and remote controllers connected over unreliable channels was presented in [… (see more)1]. The model has a nonclassical information structure that is not partially nested. Nonetheless, it is shown in [1] that the optimal control strategies are linear functions of the state estimate (which is a nonlinear function of the observations). Their proof is based on a fairly sophisticated dynamic programming argument. In this article, we present an alternative and elementary proof of the result which uses common information-based conditional independence and completion of squares.
Precision, Equity, and Public Health and Epidemiology Informatics – A Scoping Review
Renewal Monte Carlo: Renewal Theory-Based Reinforcement Learning
Jayakumar Subramanian
An online reinforcement learning algorithm called renewal Monte Carlo (RMC) is presented. RMC works for infinite horizon Markov decision pro… (see more)cesses with a designated start state. RMC is a Monte Carlo algorithm that retains the key advantages of Monte Carlo—viz., simplicity, ease of implementation, and low bias—while circumventing the main drawbacks of Monte Carlo—viz., high variance and delayed updates. Given a parameterized policy
Neuronal activity remodels the F-actin based submembrane lattice in dendrites but not axons of hippocampal neurons
Flavie Lavoie-Cardinal
Anthony Bilodeau
Mado Lemieux
Marc-André Gardner
Theresa Wiesner
Gabrielle Laramée
Paul De Koninck
Survey on Applications of Multi-Armed and Contextual Bandits
Djallel Bouneffouf
Charu Aggarwal
In recent years, the multi-armed bandit (MAB) framework has attracted a lot of attention in various applications, from recommender systems a… (see more)nd information retrieval to healthcare and finance. This success is due to its stellar performance combined with attractive properties, such as learning from less feedback. The multiarmed bandit field is currently experiencing a renaissance, as novel problem settings and algorithms motivated by various practical applications are being introduced, building on top of the classical bandit problem. This article aims to provide a comprehensive review of top recent developments in multiple real-life applications of the multi-armed bandit. Specifically, we introduce a taxonomy of common MAB-based applications and summarize the state-of-the-art for each of those domains. Furthermore, we identify important current trends and provide new perspectives pertaining to the future of this burgeoning field.
Extendable and invertible manifold learning with geometry regularized autoencoders
Andres F. Duque Correa
Sacha Morin
Kevin R. Moon
A fundamental task in data exploration is to extract simplified low dimensional representations that capture intrinsic geometry in data, esp… (see more)ecially for faithfully visualizing data in two or three dimensions. Common approaches to this task use kernel methods for manifold learning. However, these methods typically only provide an embedding of fixed input data and cannot extend to new data points. Autoencoders have also recently become popular for representation learning. But while they naturally compute feature extractors that are both extendable to new data and invertible (i.e., reconstructing original features from latent representation), they have limited capabilities to follow global intrinsic geometry compared to kernel-based manifold learning. We present a new method for integrating both approaches by incorporating a geometric regularization term in the bottleneck of the autoencoder. Our regularization, based on the diffusion potential distances from the recently-proposed PHATE visualization method, encourages the learned latent representation to follow intrinsic data geometry, similar to manifold learning algorithms, while still enabling faithful extension to new data and reconstruction of data in the original feature space from latent coordinates. We compare our approach with leading kernel methods and autoencoder models for manifold learning to provide qualitative and quantitative evidence of our advantages in preserving intrinsic structure, out of sample extension, and reconstruction. Our method is easily implemented for big-data applications, whereas other methods are limited in this regard.
Multi-Task Reinforcement Learning as a Hidden-Parameter Block MDP
Amy Zhang
Shagun Sodhani
Multi-task reinforcement learning is a rich paradigm where information from previously seen environments can be leveraged for better perform… (see more)ance and improved sample-efficiency in new environments. In this work, we leverage ideas of common structure underlying a family of Markov decision processes (MDPs) to improve performance in the few-shot regime. We use assumptions of structure from Hidden-Parameter MDPs and Block MDPs to propose a new framework, HiP-BMDP, and approach for learning a common representation and universal dynamics model. To this end, we provide transfer and generalization bounds based on task and state similarity, along with sample complexity bounds that depend on the aggregate number of samples across tasks, rather than the number of tasks, a significant improvement over prior work. To demonstrate the efficacy of the proposed method, we empirically compare and show improvements against other multi-task and meta-reinforcement learning baselines.
Chaotic Continual Learning
Touraj Laleh
Mojtaba Faramarzi
Training a deep neural network requires the model to go over training data for several epochs and update network parameters. In continual le… (see more)arning, this process results in catastrophic forgetting which is one of the core issues of this domain. Most proposed approaches for this issue try to compensate for the effects of parameter updates in the batch incremental setup in which the training model visits a lot of samples for several epochs. However, it is not realistic to expect training data will always be fed to model in a batch incremental setup. This paper proposes a chaotic stream learner that mimics the chaotic behavior of biological neurons and does not updates network parameters. In addition, it can work with fewer samples compared to deep learning models on stream learning setup. Our experiments on MNIST, CIFAR10, and Omniglot show that the chaotic stream learner has less catastrophic forgetting by its nature in comparison to a CNN model in continual learning.
Historical Issue Data of Projects on Jira
A. Nicholson
Deeksha M. Arya
Material for IEEE Software paper "How Do Open Source Software Contributors Perceive and Address Usability?"
Wenting Wang
Jinghui Cheng
Attenuated Anticipation of Social and Monetary Rewards in Autism Spectrum Disorders
Sarah Baumeister
Carolin Moessnang
Nico Bast
Sarah Hohmann
Julian Tillmann
David Goyard
Tony Charman
Sara Ambrosino
Simon Baron-Cohen
Christian Beckmann
Sven Bölte
Thomas Bourgeron
Annika Rausch
Daisy Crawley
Flavio Dell’Acqua
Sarah Durston
Christine Ecker
Dorothea L. Floris
Vincent Frouin … (see 19 more)
Hannah Hayward
Rosemary Holt
Mark Johnson
Emily J. H. Jones
Meng-Chuan Lai
Michael V. Lombardo
Luke Mason
Marianne Oldehinkel
Tony Persico
Antonia San José Cáceres
Thomas Wolfers
Will Spooren
Eva Loth
Declan Murphy
Jan K. Buitelaar
Heike Tost
Andreas Meyer-Lindenberg
Tobias Banaschewski
Daniel Brandeis
Background Reward processing has been proposed to underpin atypical social behavior, a core feature of autism spectrum disorder (ASD). Howev… (see more)er, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social rewards in ASD. Utilizing a large sample, we aimed to assess altered reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD. Methods Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.5 years) and 181 typically developing (TD) participants (7.6-30.8 years). Results Across social and monetary reward anticipation, whole-brain analyses (p0.05, family-wise error-corrected) showed hypoactivation of the right ventral striatum (VS) in ASD. Further, region of interest (ROI) analy
Deep interpretability for GWAS
Deepak Sharma
Marc-andr'e Legault
Louis-philippe Lemieux Perreault
Audrey Lemaccon
Marie-Pierre Dub'e
Genome-Wide Association Studies are typically conducted using linear models to find genetic variants associated with common diseases. In the… (see more)se studies, association testing is done on a variant-by-variant basis, possibly missing out on non-linear interaction effects between variants. Deep networks can be used to model these interactions, but they are difficult to train and interpret on large genetic datasets. We propose a method that uses the gradient based deep interpretability technique named DeepLIFT to show that known diabetes genetic risk factors can be identified using deep models along with possibly novel associations.