Publications

Adult neurogenesis acts as a neural regularizer
Lina M. Tran
Adam Santoro
Lulu Liu
Sheena A. Josselyn
Paul W. Frankland
Global SARS-CoV-2 seroprevalence from January 2020 to April 2022: A systematic review and meta-analysis of standardized population-based studies
Isabel Bergeri
Mairead Whelan
Harriet Ware
Lorenzo Subissi
Anthony Nardone
Hannah C. Lewis
Zihan Li
Xiaomeng Ma
Marta Valenciano
Brianna Cheng
Lubna Al Ariqi
Arash Rashidian
Joseph Okeibunor
Tasnim Azim
Pushpa Wijesinghe
Linh-Vi Le
Aisling Vaughan
Richard Pebody
Andrea Vicari
Tingting Yan … (see 9 more)
Mercedes Yanes-Lane
Christian Cao
David A. Clifton
Matthew P. Cheng
Jesse Papenburg
Niklas Bobrovitz
Rahul K. Arora
Maria D Van Kerkhove
Successive-Cancellation Decoding of Reed-Muller Codes With Fast Hadamard Transform
Nghia Doan
Seyyed Ali Hashemi
A novel permuted fast successive-cancellation list decoding algorithm with fast Hadamard transform (FHT-FSCL) is presented. The proposed dec… (see more)oder initializes
Rethinking Generalization: The Impact of Annotation Style on Medical Image Segmentation
Brennan Nichyporuk
Jillian L. Cardinell
Justin Szeto
Raghav Mehta
Jean-Pierre R. Falet
Douglas Arnold
Sotirios A. Tsaftaris
Generalization is an important attribute of machine learning models, particularly for those that are to be deployed in a medical context, wh… (see more)ere unreliable predictions can have real world consequences. While the failure of models to generalize across datasets is typically attributed to a mismatch in the data distributions, performance gaps are often a consequence of biases in the "ground-truth" label annotations. This is particularly important in the context of medical image segmentation of pathological structures (e.g. lesions), where the annotation process is much more subjective, and affected by a number underlying factors, including the annotation protocol, rater education/experience, and clinical aims, among others. In this paper, we show that modeling annotation biases, rather than ignoring them, poses a promising way of accounting for differences in annotation style across datasets. To this end, we propose a generalized conditioning framework to (1) learn and account for different annotation styles across multiple datasets using a single model, (2) identify similar annotation styles across different datasets in order to permit their effective aggregation, and (3) fine-tune a fully trained model to a new annotation style with just a few samples. Next, we present an image-conditioning approach to model annotation styles that correlate with specific image features, potentially enabling detection biases to be more easily identified.
Notational Programming for Notebook Environments: A Case Study with Quantum Circuits
Anthony DeArmas
Michael Roberts
Shrutarshi Basu
Tapan Parikh
We articulate a vision for computer programming that includes pen-based computing, a paradigm we term notational programming. Notational pro… (see more)gramming blurs contexts: certain typewritten variables can be referenced in handwritten notation and vice-versa. To illustrate this paradigm, we developed an extension, Notate, to computational notebooks which allows users to open drawing canvases within lines of code. As a case study, we explore quantum programming and designed a notation, Qaw, that extends quantum circuit notation with abstraction features, such as variable-sized wire bundles and recursion. Results from a usability study with novices suggest that users find our core interaction of implicit cross-context references intuitive, but suggests further improvements to debugging infrastructure, interface design, and recognition rates. Throughout, we discuss questions raised by the notational paradigm, including a shift from ‘recognition’ of notations to ‘reconfiguration’ of practices and values around programming, and from ‘sketching’ to writing and drawing, or what we call ‘notating.’
Notational Programming for Notebook Environments: A Case Study with Quantum Circuits
Ian A. Arawjo
Anthony DeArmas
Michael Roberts
Shrutarshi Basu
Tapan S. Parikh
We articulate a vision for computer programming that includes pen-based computing, a paradigm we term notational programming. Notational pro… (see more)gramming blurs contexts: certain typewritten variables can be referenced in handwritten notation and vice-versa. To illustrate this paradigm, we developed an extension, Notate, to computational notebooks which allows users to open drawing canvases within lines of code. As a case study, we explore quantum programming and designed a notation, Qaw, that extends quantum circuit notation with abstraction features, such as variable-sized wire bundles and recursion. Results from a usability study with novices suggest that users find our core interaction of implicit cross-context references intuitive, but suggests further improvements to debugging infrastructure, interface design, and recognition rates. Throughout, we discuss questions raised by the notational paradigm, including a shift from ‘recognition’ of notations to ‘reconfiguration’ of practices and values around programming, and from ‘sketching’ to writing and drawing, or what we call ‘notating.’
Low-Rank Representation of Reinforcement Learning Policies
We propose a general framework for policy representation for reinforcement learning tasks. This framework involves finding a low-dimensional… (see more) embedding of the policy on a reproducing kernel Hilbert space (RKHS). The usage of RKHS based methods allows us to derive strong theoretical guarantees on the expected return of the reconstructed policy. Such guarantees are typically lacking in black-box models, but are very desirable in tasks requiring stability and convergence guarantees. We conduct several experiments on classic RL domains. The results confirm that the policies can be robustly represented in a low-dimensional space while the embedded policy incurs almost no decrease in returns.
Modeling electronic health record data using an end-to-end knowledge-graph-informed topic model
Yuesong Zou
Ahmad Pesaranghader
Ziyang Song
Aman Verma
Invariant representation driven neural classifier for anti-QCD jet tagging
Taoli Cheng
Learning Latent Structural Causal Models
Jithendaraa Subramanian
Yashas Annadani
Ivaxi Sheth
Nan Rosemary Ke
Tristan Deleu
Stefan Bauer
Causal learning has long concerned itself with the accurate recovery of underlying causal mechanisms. Such causal modelling enables better e… (see more)xplanations of out-of-distribution data. Prior works on causal learning assume that the high-level causal variables are given. However, in machine learning tasks, one often operates on low-level data like image pixels or high-dimensional vectors. In such settings, the entire Structural Causal Model (SCM) -- structure, parameters, \textit{and} high-level causal variables -- is unobserved and needs to be learnt from low-level data. We treat this problem as Bayesian inference of the latent SCM, given low-level data. For linear Gaussian additive noise SCMs, we present a tractable approximate inference method which performs joint inference over the causal variables, structure and parameters of the latent SCM from random, known interventions. Experiments are performed on synthetic datasets and a causally generated image dataset to demonstrate the efficacy of our approach. We also perform image generation from unseen interventions, thereby verifying out of distribution generalization for the proposed causal model.
Machine learning-based incremental learning in interactive domain modelling
Rijul Saini
Gunter Mussbacher
Jörg Kienzle
Hierarchical Reinforcement Learning for Precise Soccer Shooting Skills using a Quadrupedal Robot
Yandong Ji
Zhongyu Li
Yinan Sun
Xue Bin Peng
Sergey Levine
Koushil Sreenath
We address the problem of enabling quadrupedal robots to perform precise shooting skills in the real world using reinforcement learning. Dev… (see more)eloping algorithms to enable a legged robot to shoot a soccer ball to a given target is a challenging problem that combines robot motion control and planning into one task. To solve this problem, we need to consider the dynamics limitation and motion stability during the control of a dynamic legged robot. Moreover, we need to consider motion planning to shoot the hard-to-model deformable ball rolling on the ground with uncertain friction to a desired location. In this paper, we propose a hierarchical framework that leverages deep reinforcement learning to train (a) a robust motion control policy that can track arbitrary motions and (b) a planning policy to decide the desired kicking motion to shoot a soccer ball to a target. We deploy the proposed framework on an A1 quadrupedal robot and enable it to accurately shoot the ball to random targets in the real world.