Portrait of Hugo Larochelle

Hugo Larochelle

Core Industry Member
Canada CIFAR AI Chair
Adjunct professor, Université de Montréal, Depatment of Computer Science and Operations Research
Research Scientist, Google DeepMind
Research Topics
Deep Learning

Biography

I am a researcher in the Google DeepMind (previously Google Brain) team in Montréal, an adjunct professor at Université de Montréal, and a Canada CIFAR AI Chair. My research focuses on the study and development of deep learning algorithms.

Current Students

PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :

Publications

Don't flatten, tokenize! Unlocking the key to SoftMoE's efficacy in deep RL
Ghada Sokar
Johan Samir Obando Ceron
The use of deep neural networks in reinforcement learning (RL) often suffers from performance degradation as model size increases. While sof… (see more)t mixtures of experts (SoftMoEs) have recently shown promise in mitigating this issue for online RL, the reasons behind their effectiveness remain largely unknown. In this work we provide an in-depth analysis identifying the key factors driving this performance gain. We discover the surprising result that tokenizing the encoder output, rather than the use of multiple experts, is what is behind the efficacy of SoftMoEs. Indeed, we demonstrate that even with an appropriately scaled single expert, we are able to maintain the performance gains, largely thanks to tokenization.
Selective Unlearning via Representation Erasure Using Domain Adversarial Training
Nazanin Mohammadi Sepahvand
Eleni Triantafillou
James J. Clark
Daniel M. Roy
When deploying machine learning models in the real world, we often face the challenge of “unlearning” specific data points or subsets a… (see more)fter training. Inspired by Domain-Adversarial Training of Neural Networks (DANN), we propose a novel algorithm,SURE, for targeted unlearning.SURE treats the process as a domain adaptation problem, where the “forget set” (data to be removed) and a validation set from the same distribution form two distinct domains. We train a domain classifier to discriminate between representations from the forget and validation sets.Using a gradient reversal strategy similar to DANN, we perform gradient updates to the representations to “fool” the domain classifier and thus obfuscate representations belonging to the forget set. Simultaneously, gradient descent is applied to the retain set (original training data minus the forget set) to preserve its classification performance. Unlike other unlearning approaches whose training objectives are built based on model outputs, SURE directly manipulates the representations.This is key to ensure robustness against a set of more powerful attacks than currently considered in the literature, that aim to detect which examples were unlearned through access to learned embeddings. Our thorough experiments reveal that SURE has a better unlearning quality to utility trade-off compared to other standard unlearning techniques for deep neural networks.
Many-Shot In-Context Learning
Avi Singh
Lei M Zhang
Bernd Bohnet
Stephanie C.Y. Chan
Luis Rosias
Biao Zhang
Ankesh Anand
Zaheer Abbas
Azade Nova
John D Co-Reyes
Eric Chu
Feryal Behbahani
Aleksandra Faust
Large language models (LLMs) excel at few-shot in-context learning (ICL) -- learning from a few examples provided in context at inference, w… (see more)ithout any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples – the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated outputs. To mitigate this limitation, we explore two new settings: (1) "Reinforced ICL" that uses model-generated chain-of-thought rationales in place of human rationales, and (2) "Unsupervised ICL" where we remove rationales from the prompt altogether, and prompts the model only with domain-specific inputs. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. We demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases, can learn high-dimensional functions with numerical inputs, and performs comparably to supervised fine-tuning. Finally, we reveal the limitations of next-token prediction loss as an indicator of downstream ICL performance.
Many-Shot In-Context Learning
Avi Singh
Lei M Zhang
Bernd Bohnet
Luis Rosias
Stephanie C.Y. Chan
Ankesh Anand
Zaheer Abbas
Biao Zhang
Azade Nova
John D. Co-Reyes
Eric Chu
Feryal M. P. Behbahani
Aleksandra Faust
Large language models (LLMs) excel at few-shot in-context learning (ICL) -- learning from a few examples provided in context at inference, w… (see more)ithout any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples -- the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated examples. To mitigate this limitation, we explore two new settings: Reinforced and Unsupervised ICL. Reinforced ICL uses model-generated chain-of-thought rationales in place of human examples. Unsupervised ICL removes rationales from the prompt altogether, and prompts the model only with domain-specific questions. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. Finally, we demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases and can learn high-dimensional functions with numerical inputs. Our analysis also reveals the limitations of next-token prediction loss as an indicator of downstream ICL performance.
Many-Shot In-Context Learning
Avi Singh
Lei M Zhang
Bernd Bohnet
Stephanie C.Y. Chan
Ankesh Anand
Zaheer Abbas
Azade Nova
John D Co-Reyes
Eric Chu
Feryal Behbahani
Aleksandra Faust
Large language models (LLMs) excel at few-shot in-context learning (ICL) -- learning from a few examples provided in context at inference, w… (see more)ithout any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples -- the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated examples. To mitigate this limitation, we explore two new settings: Reinforced and Unsupervised ICL. Reinforced ICL uses model-generated chain-of-thought rationales in place of human examples. Unsupervised ICL removes rationales from the prompt altogether, and prompts the model only with domain-specific questions. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. Finally, we demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases, can learn high-dimensional functions with numerical inputs, and performs comparably to fine-tuning. We also find that inference cost increases linearly in the many-shot regime, and frontier LLMs benefit from many-shot ICL to varying degrees. Our analysis also reveals the limitations of next-token prediction loss as an indicator of downstream ICL performance.
Many-Shot In-Context Learning
Avi Singh
Lei M Zhang
Bernd Bohnet
Stephanie C.Y. Chan
Ankesh Anand
Zaheer Abbas
Azade Nova
John D Co-Reyes
Eric Chu
Feryal Behbahani
Aleksandra Faust
Large language models (LLMs) excel at few-shot in-context learning (ICL) -- learning from a few examples provided in context at inference, w… (see more)ithout any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples -- the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated examples. To mitigate this limitation, we explore two new settings: Reinforced and Unsupervised ICL. Reinforced ICL uses model-generated chain-of-thought rationales in place of human examples. Unsupervised ICL removes rationales from the prompt altogether, and prompts the model only with domain-specific questions. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. Finally, we demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases, can learn high-dimensional functions with numerical inputs, and performs comparably to fine-tuning. We also find that inference cost increases linearly in the many-shot regime, and frontier LLMs benefit from many-shot ICL to varying degrees. Our analysis also reveals the limitations of next-token prediction loss as an indicator of downstream ICL performance.
Many-Shot In-Context Learning
Avi Singh
Lei M Zhang
Bernd Bohnet
Stephanie C.Y. Chan
Ankesh Anand
Zaheer Abbas
Azade Nova
John D Co-Reyes
Eric Chu
Feryal Behbahani
Aleksandra Faust
Large language models (LLMs) excel at few-shot in-context learning (ICL) -- learning from a few examples provided in context at inference, w… (see more)ithout any weight updates. Newly expanded context windows allow us to investigate ICL with hundreds or thousands of examples -- the many-shot regime. Going from few-shot to many-shot, we observe significant performance gains across a wide variety of generative and discriminative tasks. While promising, many-shot ICL can be bottlenecked by the available amount of human-generated examples. To mitigate this limitation, we explore two new settings: Reinforced and Unsupervised ICL. Reinforced ICL uses model-generated chain-of-thought rationales in place of human examples. Unsupervised ICL removes rationales from the prompt altogether, and prompts the model only with domain-specific questions. We find that both Reinforced and Unsupervised ICL can be quite effective in the many-shot regime, particularly on complex reasoning tasks. Finally, we demonstrate that, unlike few-shot learning, many-shot learning is effective at overriding pretraining biases, can learn high-dimensional functions with numerical inputs, and performs comparably to fine-tuning. We also find that inference cost increases linearly in the many-shot regime, and frontier LLMs benefit from many-shot ICL to varying degrees. Our analysis also reveals the limitations of next-token prediction loss as an indicator of downstream ICL performance.
Optimisation of quantitative brain diffusion-relaxation MRI acquisition protocols with physics-informed machine learning.
Álvaro Planchuelo-Gómez
Maxime Descoteaux
Jana Hutter
Derek K. Jones
C. Tax
A density estimation perspective on learning from pairwise human preferences
Vincent Dumoulin
Daniel D. Johnson
Yann Dauphin
Learning from human feedback (LHF) -- and in particular learning from pairwise preferences -- has recently become a crucial ingredient in tr… (see more)aining large language models (LLMs), and has been the subject of much research. Most recent works frame it as a reinforcement learning problem, where a reward function is learned from pairwise preference data and the LLM is treated as a policy which is adapted to maximize the rewards, often under additional regularization constraints. We propose an alternative interpretation which centers on the generative process for pairwise preferences and treats LHF as a density estimation problem. We provide theoretical and empirical results showing that for a family of generative processes defined via preference behavior distribution equations, training a reward function on pairwise preferences effectively models an annotator's implicit preference distribution. Finally, we discuss and present findings on"annotator misspecification"-- failure cases where wrong modeling assumptions are made about annotator behavior, resulting in poorly-adapted models -- suggesting that approaches that learn from pairwise human preferences could have trouble learning from a population of annotators with diverse viewpoints.
Consolidating Separate Degradations Model via Weights Fusion and Distillation
Dinesh Daultani
Real-world images prevalently contain different varieties of degradation, such as motion blur and luminance noise. Computer vision recogniti… (see more)on models trained on clean images perform poorly on degraded images. Previously, several works have explored how to perform image classification of degraded images while training a single model for each degradation. Nevertheless, it becomes challenging to host several degradation models for each degradation on limited hardware applications and to estimate degradation parameters correctly at the run-time. This work proposes a method for effectively combining several models trained separately on different degradations into a single model to classify images with different types of degradations. Our proposed method is four-fold: (1) train a base model on clean images, (2) fine-tune the base model in-dividually for all given image degradations, (3) perform a fusion of weights given the fine-tuned models for individual degradations, (4) perform fine-tuning on given task using distillation and cross-entropy loss. Our proposed method can outperform previous state-of-the-art methods of pretraining in out-of-distribution generalization based on degradations such as JPEG compression, salt-and-pepper noise, Gaussian blur, and additive white Gaussian noise by 2.5% on CIFAR-100 dataset and by 1.3% on CIFAR-10 dataset. Moreover, our proposed method can handle degra-dation used for training without any explicit information about degradation at the inference time. Code will be available at https://github.com/dineshdaultani/FusionDistill.
Unlearning via Sparse Representations
Vedant Shah
Frederik Träuble
Ashish Malik
Michael Curtis Mozer
Sanjeev Arora
Anirudh Goyal
Machine \emph{unlearning}, which involves erasing knowledge about a \emph{forget set} from a trained model, can prove to be costly and infea… (see more)sible by existing techniques. We propose a nearly compute-free zero-shot unlearning technique based on a discrete representational bottleneck. We show that the proposed technique efficiently unlearns the forget set and incurs negligible damage to the model's performance on the rest of the data set. We evaluate the proposed technique on the problem of \textit{class unlearning} using three datasets: CIFAR-10, CIFAR-100, and LACUNA-100. We compare the proposed technique to SCRUB, a state-of-the-art approach which uses knowledge distillation for unlearning. Across all three datasets, the proposed technique performs as well as, if not better than SCRUB while incurring almost no computational cost.
Unlearning via Sparse Representations
Vedant Shah
Frederik Träuble
Ashish Malik
Michael Curtis Mozer
Sanjeev Arora
Anirudh Goyal