Portrait of Pascal Vincent

Pascal Vincent

Core Industry Member
Associate Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Scientist, Facebook AI Research (FAIR) Montréal

Biography

Pascal Vincent is a research scientist in the Fundamental AI Research (FAIR) team at Meta and an adjunct professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal.

He is also a founding member of Mila – Quebec Artificial Intelligence Institute and an associate fellow in CIFAR’s Learning in Machines & Brains program.

Vincent’s research on principles and algorithms in representation learning led him to uncover several seminal ideas that became key enablers for the successes of deep learning methods. Among his most influential contributions is the seminal paper on neural language models “A Neural Probabilistic Language Model” (Bengio et al. 2013), which laid the foundations on which all artificial neural network based language models are built.

His work on denoising autoencoders (Vincent et al. 2008, 2010) was the first to propose the pretext task of filling in artificially introduced blanks for the sake of learning useful representations in any modality, a precursor of what is today called self-supervised learning.

In another seminal paper, “A Connection Between Score Matching and Denoising Autoencoders” (Vincent 2011), he developed the “denoising score matching” principle, which is now routinely used to train diffusion-based generative models.

Vincent’s current research focuses on novel theory and algorithms for representation learning to enable robust generalization out-of-distribution.

Current Students

Publications

A surprisingly simple technique to control the pretraining bias for better transfer: Expand or Narrow your representation
Florian Bordes
Samuel Lavoie
Randall Balestriero
Nicolas Ballas
Instance-Conditioned GAN Data Augmentation for Representation Learning
Pietro Astolfi
Arantxa Casanova
Jakob Verbeek
Michal Drozdzal
Objectives Matter: Understanding the Impact of Self-Supervised Objectives on Vision Transformer Representations
Shashank Shekhar
Florian Bordes
Ari S. Morcos
Joint-embedding based learning (e.g., SimCLR, MoCo, DINO) and reconstruction-based learning (e.g., BEiT, SimMIM, MAE) are the two leading pa… (see more)radigms for self-supervised learning of vision transformers, but they differ substantially in their transfer performance. Here, we aim to explain these differences by analyzing the impact of these objectives on the structure and transferability of their representations. Our analysis reveals that reconstruction-based learning features are significantly dissimilar to joint-embedding based learning features and that models trained with similar objectives learn similar features even across architectures. These differences arise early in the network, primarily driven by attention and normalization layers. We find that joint-embedding features yield better linear probe transfer for classification because the different objectives drive different distributions of information and invariances in the representation. These differences explain opposite trends in transfer performance for downstream tasks that require spatial specificity in features. Finally, we address how fine-tuning changes reconstructive representations to enable better transfer, showing that it re-organizes the information to be more similar to pre-trained joint embedding models.
Towards Democratizing Joint-Embedding Self-Supervised Learning
Florian Bordes
Randall Balestriero
Joint Embedding Self-Supervised Learning (JE-SSL) has seen rapid developments in recent years, due to its promise to effectively leverage la… (see more)rge unlabeled data. The development of JE-SSL methods was driven primarily by the search for ever increasing downstream classification accuracies, using huge computational resources, and typically built upon insights and intuitions inherited from a close parent JE-SSL method. This has led unwittingly to numerous pre-conceived ideas that carried over across methods e.g. that SimCLR requires very large mini batches to yield competitive accuracies; that strong and computationally slow data augmentations are required. In this work, we debunk several such ill-formed a priori ideas in the hope to unleash the full potential of JE-SSL free of unnecessary limitations. In fact, when carefully evaluating performances across different downstream tasks and properly optimizing hyper-parameters of the methods, we most often -- if not always -- see that these widespread misconceptions do not hold. For example we show that it is possible to train SimCLR to learn useful representations, while using a single image patch as negative example, and simple Gaussian noise as the only data augmentation for the positive pair. Along these lines, in the hope to democratize JE-SSL and to allow researchers to easily make more extensive evaluations of their methods, we introduce an optimized PyTorch library for SSL.
Disentanglement of Correlated Factors via Hausdorff Factorized Support
Karsten Roth
Mark Ibrahim
Zeynep Akata
Diane Bouchacourt
A grand goal in deep learning research is to learn representations capable of generalizing across distribution shifts. Disentanglement is on… (see more)e promising direction aimed at aligning a model's representation with the underlying factors generating the data (e.g. color or background). Existing disentanglement methods, however, rely on an often unrealistic assumption: that factors are statistically independent. In reality, factors (like object color and shape) are correlated. To address this limitation, we consider the use of a relaxed disentanglement criterion -- the Hausdorff Factorized Support (HFS) criterion -- that encourages only pairwise factorized \emph{support}, rather than a factorial distribution, by minimizing a Hausdorff distance. This allows for arbitrary distributions of the factors over their support, including correlations between them. We show that the use of HFS consistently facilitates disentanglement and recovery of ground-truth factors across a variety of correlation settings and benchmarks, even under severe training correlations and correlation shifts, with in parts over
ImageNet-X: Understanding Model Mistakes with Factor of Variation Annotations
Badr Youbi Idrissi
Diane Bouchacourt
Randall Balestriero
Ivan Evtimov
Caner Hazirbas
Nicolas Ballas
Michal Drozdzal
David Lopez-Paz
Mark Ibrahim
Deep learning vision systems are widely deployed across applications where reliability is critical. However, even today's best models can fa… (see more)il to recognize an object when its pose, lighting, or background varies. While existing benchmarks surface examples challenging for models, they do not explain why such mistakes arise. To address this need, we introduce ImageNet-X—a set of sixteen human annotations of factors such as pose, background, or lighting the entire ImageNet-1k validation set as well as a random subset of 12k training images. Equipped with ImageNet-X, we investigate 2,200 current recognition models and study the types of mistakes as a function of model’s (1) architecture, e.g. transformer vs. convolutional, (2) learning paradigm, e.g. supervised vs. self-supervised, and (3) training procedures, e.g., data augmentation. Regardless of these choices, we find models have consistent failure modes across ImageNet-X categories. We also find that while data augmentation can improve robustness to certain factors, they induce spill-over effects to other factors. For example, color-jitter augmentation improves robustness to color and brightness, but surprisingly hurts robustness to pose. Together, these insights suggest to advance the robustness of modern vision models, future research should focus on collecting additional data and understanding data augmentation schemes. Along with these insights, we release a toolkit based on ImageNet-X to spur further study into the mistakes image recognition systems make.
The Hidden Uniform Cluster Prior in Self-Supervised Learning
Mahmoud Assran
Randall Balestriero
Quentin Duval
Florian Bordes
Ishan Misra
Piotr Bojanowski
Nicolas Ballas
A successful paradigm in representation learning is to perform self-supervised pretraining using tasks based on mini-batch statistics (e.g.,… (see more) SimCLR, VICReg, SwAV, MSN). We show that in the formulation of all these methods is an overlooked prior to learn features that enable uniform clustering of the data. While this prior has led to remarkably semantic representations when pretraining on class-balanced data, such as ImageNet, we demonstrate that it can hamper performance when pretraining on class-imbalanced data. By moving away from conventional uniformity priors and instead preferring power-law distributed feature clusters, we show that one can improve the quality of the learned representations on real-world class-imbalanced datasets. To demonstrate this, we develop an extension of the Masked Siamese Networks (MSN) method to support the use of arbitrary features priors.
The Emergence of Argument Structure in Artificial Languages
Tom Bosc
Abstract Computational approaches to the study of language emergence can help us understand how natural languages are shaped by cognitive an… (see more)d sociocultural factors. Previous work focused on tasks where agents refer to a single entity. In contrast, we study how agents predicate, that is, how they express that some relation holds between several entities. We introduce a setup where agents talk about a variable number of entities that can be partially observed by the listener. In the presence of a least-effort pressure, they tend to discuss only entities that are not observed by the listener. Thus we can obtain artificial phrases that denote a single entity, as well as artificial sentences that denote several entities. In natural languages, if we ignore the verb, phrases are usually concatenated, either in a specific order or by adding case markers to form sentences. Our setup allows us to quantify how much this holds in emergent languages using a metric we call concatenability. We also measure transitivity, which quantifies the importance of word order. We demonstrate the usefulness of this new setup and metrics for studying factors that influence argument structure. We compare agents having access to input representations structured into pre-segmented objects with properties, versus unstructured representations. Our results indicate that the awareness of object structure yields a more natural sentence organization.
High Fidelity Visualization of What Your Self-Supervised Representation Knows About
Florian Bordes
Randall Balestriero
Discovering what is learned by neural networks remains a challenge. In self-supervised learning, classification is the most common task used… (see more) to evaluate how good a representation is. However, relying only on such downstream task can limit our understanding of what information is retained in the representation of a given input. In this work, we showcase the use of a Representation Conditional Diffusion Model (RCDM) to visualize in data space the representations learned by self-supervised models. The use of RCDM is motivated by its ability to generate high-quality samples -- on par with state-of-the-art generative models -- while ensuring that the representations of those samples are faithful i.e. close to the one used for conditioning. By using RCDM to analyze self-supervised models, we are able to clearly show visually that i) SSL (backbone) representation are not invariant to the data augmentations they were trained with -- thus debunking an often restated but mistaken belief; ii) SSL post-projector embeddings appear indeed invariant to these data augmentation, along with many other data symmetries; iii) SSL representations appear more robust to small adversarial perturbation of their inputs than representations trained in a supervised manner; and iv) that SSL-trained representations exhibit an inherent structure that can be explored thanks to RCDM visualization and enables image manipulation.
Masked Siamese Networks for Label-Efficient Learning
Mahmoud Assran
Mathilde Caron
Ishan Misra
Piotr Bojanowski
Florian Bordes
Armand Joulin
Nicolas Ballas
We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our approach matches the … (see more)representation of an image view containing randomly masked patches to the representation of the original unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures, while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance, on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy, and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark. Our code is publicly available.
Masked Siamese Networks for Label-Efficient Learning
Mahmoud Assran
Mathilde Caron
Ishan Misra
Piotr Bojanowski
Florian Bordes
Armand Joulin
Nicolas Ballas
We propose Masked Siamese Networks (MSN), a self-supervised learning framework for learning image representations. Our approach matches the … (see more)representation of an image view containing randomly masked patches to the representation of the original unmasked image. This self-supervised pre-training strategy is particularly scalable when applied to Vision Transformers since only the unmasked patches are processed by the network. As a result, MSNs improve the scalability of joint-embedding architectures, while producing representations of a high semantic level that perform competitively on low-shot image classification. For instance, on ImageNet-1K, with only 5,000 annotated images, our base MSN model achieves 72.4% top-1 accuracy, and with 1% of ImageNet-1K labels, we achieve 75.7% top-1 accuracy, setting a new state-of-the-art for self-supervised learning on this benchmark. Our code is publicly available.
Accounting for Variance in Machine Learning Benchmarks
Xavier Bouthillier
Pierre Delaunay
Mirko Bronzi
Assya Trofimov
Brennan Nichyporuk
Justin Szeto
Naz Sepah
Edward Raff
Kanika Madan
Vikram Voleti
Vincent Michalski
Dmitriy Serdyuk
Gael Varoquaux
Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the l… (see more)earning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices. This is prohibitively expensive, and corners are cut to reach conclusions. We model the whole benchmarking process, revealing that variance due to data sampling, parameter initialization and hyperparameter choice impact markedly the results. We analyze the predominant comparison methods used today in the light of this variance. We show a counter-intuitive result that adding more sources of variation to an imperfect estimator approaches better the ideal estimator at a 51 times reduction in compute cost. Building on these results, we study the error rate of detecting improvements, on five different deep-learning tasks/architectures. This study leads us to propose recommendations for performance comparisons.