Portrait of Pablo Piantanida

Pablo Piantanida

Associate Academic Member
Full Professor, Université Paris-Saclay
Director, International Laboratory on Learning Systems (ILLS), McGill University
Associate professor, École de technologie supérieure (ETS), Department of Systems Engineering

Biography

I am a professor at CentraleSupélec (Université Paris-Saclay) with the French National Centre for Scientific Research (CNRS), and Director of the International Laboratory on Learning Systems (ILLS) which gathers McGill University, École de technologie supérieure (ÉTS), Mila – Quebec AI Institute, France’s Centre Nationale de la Recherche Scientifique (CNRS), Université Paris-Saclay, and the École CentraleSupélec.

My research revolves around the application of advanced statistical and information-theoretic techniques to the field of machine learning. I am interested in developing rigorous techniques based on information measures and concepts for building safe and trustworthy AI systems and establishing confidence in their behavior and robustness, thereby securing their use in society. My primary areas of expertise include information theory, information geometry, learning theory, privacy, fairness, with applications to computer vision and natural language processing.

I obtained my undergraduate education at the University of Buenos Aires and pursued graduate studies in applied mathematics at Paris-Saclay University in France. Throughout my career, I have also held visiting positions at INRIA, Université de Montréal and Ecole de Technologie Supérieure (ÉTS), among others.

My earlier research encompassed the fields of information theory beyond distributed compression, statistical decision, universal source coding, cooperation, feedback, index coding, key generation, security, and privacy, among others.

I teach courses on machine learning, information theory and deep learning, covering topics such as statistical learning theory, information measures, statistical principles of neural networks.

Current Students

Publications

Learning Anonymized Representations with Adversarial Neural Networks
Clément Feutry
P. Duhamel
Statistical methods protecting sensitive information or the identity of the data owner have become critical to ensure privacy of individuals… (see more) as well as of organizations. This paper investigates anonymization methods based on representation learning and deep neural networks, and motivated by novel information theoretical bounds. We introduce a novel training objective for simultaneously training a predictor over target variables of interest (the regular labels) while preventing an intermediate representation to be predictive of the private labels. The architecture is based on three sub-networks: one going from input to representation, one from representation to predicted regular labels, and one from representation to predicted private labels. The training procedure aims at learning representations that preserve the relevant part of the information (about regular labels) while dismissing information about the private labels which correspond to the identity of a person. We demonstrate the success of this approach for two distinct classification versus anonymization tasks (handwritten digits and sentiment analysis).