Portrait of Marc Gendron-Bellemare is unavailable

Marc Gendron-Bellemare

Core Industry Member
Canada CIFAR AI Chair
Associate Professor, McGill University, School of Computer Science
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Chief Scientific Officer, Reliant AI

Biography

I am Chief Scientific Officer at Reliant AI, an adjunct professor at the School of Computer and Science at McGill University, and an adjunct professor at the Department of Computer Science and Operations Research (DIRO) at Université de Montréal.

Previously, I was a research scientist at Google Brain in Montréal, where my research focused on reinforcement learning effort. From 2013 to 2017, I worked at DeepMind in the U.K. I received my PhD from the University of Alberta under the supervision of Michael Bowling and Joel Veness.

My research lies at the intersection of reinforcement learning and probabilistic prediction. I am also interested in deep learning, generative modelling, online learning and information theory.

Current Students

PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - McGill University
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :

Publications

Proto-Value Networks: Scaling Representation Learning with Auxiliary Tasks
Jesse Farebrother
Joshua Greaves
Rishabh Agarwal
Charline Le Lan
Ross Goroshin
Auxiliary tasks improve the representations learned by deep reinforcement learning agents. Analytically, their effect is reasonably well-und… (see more)erstood; in practice, how-ever, their primary use remains in support of a main learning objective, rather than as a method for learning representations. This is perhaps surprising given that many auxiliary tasks are defined procedurally, and hence can be treated as an essentially infinite source of information about the environment. Based on this observation, we study the effectiveness of auxiliary tasks for learning rich representations, focusing on the setting where the number of tasks and the size of the agent’s network are simultaneously increased. For this purpose, we derive a new family of auxiliary tasks based on the successor measure. These tasks are easy to implement and have appealing theoretical properties. Combined with a suitable off-policy learning rule, the result is a representation learning algorithm that can be understood as extending Mahadevan & Maggioni (2007)’s proto-value functions to deep reinforcement learning – accordingly, we call the resulting object proto-value networks. Through a series of experiments on the Arcade Learning Environment, we demonstrate that proto-value networks produce rich features that may be used to obtain performance comparable to established algorithms, using only linear approximation and a small number (~4M) of interactions with the environment’s reward function.
Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier
Pierluca D'Oro
Max Schwarzer
Evgenii Nikishin
Increasing the replay ratio, the number of updates of an agent's parameters per environment interaction, is an appealing strategy for improv… (see more)ing the sample efficiency of deep reinforcement learning algorithms. In this work, we show that fully or partially resetting the parameters of deep reinforcement learning agents causes better replay ratio scaling capabilities to emerge. We push the limits of the sample efficiency of carefully-modified algorithms by training them using an order of magnitude more updates than usual, significantly improving their performance in the Atari 100k and DeepMind Control Suite benchmarks. We then provide an analysis of the design choices required for favorable replay ratio scaling to be possible and discuss inherent limits and tradeoffs.
Bigger, Better, Faster: Human-level Atari with human-level efficiency
Max Schwarzer
Johan Samir Obando Ceron
Rishabh Agarwal
We introduce a value-based RL agent, which we call BBF, that achieves super-human performance in the Atari 100K benchmark. BBF relies on sca… (see more)ling the neural networks used for value estimation, as well as a number of other design choices that enable this scaling in a sample-efficient manner. We conduct extensive analyses of these design choices and provide insights for future work. We end with a discussion about updating the goalposts for sample-efficient RL research on the ALE. We make our code and data publicly available at https://github.com/google-research/google-research/tree/master/bigger_better_faster.
The Small Batch Size Anomaly in Multistep Deep Reinforcement Learning
Johan Samir Obando Ceron
The Statistical Benefits of Quantile Temporal-Difference Learning for Value Estimation
Mark Rowland
Yunhao Tang
Clare Lyle
Remi Munos
Will Dabney
We study the problem of temporal-difference-based policy evaluation in reinforcement learning. In particular, we analyse the use of a distri… (see more)butional reinforcement learning algorithm, quantile temporal-difference learning (QTD), for this task. We reach the surprising conclusion that even if a practitioner has no interest in the return distribution beyond the mean, QTD (which learns predictions about the full distribution of returns) may offer performance superior to approaches such as classical TD learning, which predict only the mean return, even in the tabular setting.
The Statistical Benefits of Quantile Temporal-Difference Learning for Value Estimation
Mark Rowland
Yunhao Tang
Clare Lyle
Remi Munos
Will Dabney
Variance Double-Down: The Small Batch Size Anomaly in Multistep Deep Reinforcement Learning
Johan Samir Obando Ceron
In deep reinforcement learning, multi-step learning is almost unavoidable to achieve state-of-the-art performance. However, the increased va… (see more)riance that multistep learning brings makes it difficult to increase the update horizon beyond relatively small numbers. In this paper, we report the counterintuitive finding that decreasing the batch size parameter improves the performance of many standard deep RL agents that use multi-step learning. It is well-known that gradient variance decreases with increasing batch sizes, so obtaining improved performance by increasing variance on two fronts is a rather surprising finding. We conduct a broad set of experiments to better understand what we call the variance doubledown phenomenon.
Reincarnating Reinforcement Learning: Reusing Prior Computation to Accelerate Progress
Metrics and continuity in reinforcement learning
Contrastive Behavioral Similarity Embeddings for Generalization in Reinforcement Learning
Rishabh Agarwal
Marlos C. Machado
Reinforcement learning methods trained on few environments rarely learn policies that generalize to unseen environments. To improve generali… (see more)zation, we incorporate the inherent sequential structure in reinforcement learning into the representation learning process. This approach is orthogonal to recent approaches, which rarely exploit this structure explicitly. Specifically, we introduce a theoretically motivated policy similarity metric (PSM) for measuring behavioral similarity between states. PSM assigns high similarity to states for which the optimal policies in those states as well as in future states are similar. We also present a contrastive representation learning procedure to embed any state similarity metric, which we instantiate with PSM to obtain policy similarity embeddings (PSEs). We demonstrate that PSEs improve generalization on diverse benchmarks, including LQR with spurious correlations, a jumping task from pixels, and Distracting DM Control Suite.
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Deep reinforcement learning (RL) algorithms are predominantly evaluated by comparing their relative performance on a large suite of tasks. M… (see more)ost published results on deep RL benchmarks compare point estimates of aggregate performance such as mean and median scores across tasks, ignoring the statistical uncertainty implied by the use of a finite number of training runs. Beginning with the Arcade Learning Environment (ALE), the shift towards computationally-demanding benchmarks has led to the practice of evaluating only a small number of runs per task, exacerbating the statistical uncertainty in point estimates. In this paper, we argue that reliable evaluation in the few run deep RL regime cannot ignore the uncertainty in results without running the risk of slowing down progress in the field. We illustrate this point using a case study on the Atari 100k benchmark, where we find substantial discrepancies between conclusions drawn from point estimates alone versus a more thorough statistical analysis. With the aim of increasing the field's confidence in reported results with a handful of runs, we advocate for reporting interval estimates of aggregate performance and propose performance profiles to account for the variability in results, as well as present more robust and efficient aggregate metrics, such as interquartile mean scores, to achieve small uncertainty in results. Using such statistical tools, we scrutinize performance evaluations of existing algorithms on other widely used RL benchmarks including the ALE, Procgen, and the DeepMind Control Suite, again revealing discrepancies in prior comparisons. Our findings call for a change in how we evaluate performance in deep RL, for which we present a more rigorous evaluation methodology, accompanied with an open-source library rliable, to prevent unreliable results from stagnating the field. This work received an outstanding paper award at NeurIPS 2021.
Autonomous navigation of stratospheric balloons using reinforcement learning
S. Candido
Jun Gong
Marlos C. Machado
Subhodeep Moitra
Sameera S. Ponda
Ziyun Wang