Portrait of Tegan Maharaj

Tegan Maharaj

Core Academic Member
Assistant Professor in Machine Learning, HEC Montréal, Department of Decision Science
Research Topics
Deep Learning
Dynamical Systems
Machine Learning Theory
Multimodal Learning
Representation Learning

Biography

I am an assistant professor at the Department of Decision Science at HEC Montréal.

The goal of my research is to contribute understanding and techniques to the growing science of responsible AI development, while usefully applying AI to high-impact ecological problems related to climate change, epidemiology, AI alignment and ecological impact assessments. My recent research has two themes: (1) using deep models for policy analysis and risk mitigation, and (2) designing data or unit test environments to empirically evaluate learning behaviour or simulate the deployment of AI systems. Please contact me if you are interested in collaborations in these areas.

I am generally interested in studying “what goes into” deep models—not only data, but also the broader learning environment (e.g., task design/specification, loss function and regularization) and the broader societal context of deployment (e.g., privacy considerations, trends and incentives, norms and human biases). I am concerned and passionate about AI ethics and safety, and the application of ML to environmental management, health and social welfare.

Current Students

Master's Research - Université de Montréal
Principal supervisor :

Publications

COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital Contact Tracing
Prateek Gupta
Martin Weiss
Nasim Rahaman
Hannah Alsdurf
Abhinav Sharma
Nanor Minoyan
Soren Harnois-Leblanc
Victor Schmidt
Pierre-Luc St-Charles
Tristan Deleu
andrew williams
Akshay Patel
Meng Qu
Olexa Bilaniuk
gaetan caron
pierre luc carrier
satya ortiz gagne
Marc-Andre Rousseau
Joumana Ghosn
Yang Zhang
Bernhard Schölkopf
Joanna Merckx
COVI White Paper
Hannah Alsdurf
Tristan Deleu
Prateek Gupta
Daphne Ippolito
Richard Janda
Max Jarvie
Tyler J. Kolody
Sekoul Krastev
Robert Obryk
Dan Pilat
Valerie Pisano
Benjamin Prud'homme
Meng Qu
Nasim Rahaman
Jean-franois Rousseau
Abhinav Sharma
Brooke Struck … (see 3 more)
Martin Weiss
Yun William Yu
COVI White Paper
Hannah Alsdurf
Tristan Deleu
Prateek Gupta
Daphne Ippolito
Richard Janda
Max Jarvie
Tyler J. Kolody
Sekoul Krastev
Robert Obryk
Dan Pilat
Valerie Pisano
Benjamin Prud'homme
Meng Qu
Nasim Rahaman
Jean-franois Rousseau
Abhinav Sharma
Brooke Struck … (see 3 more)
Martin Weiss
Yun William Yu
Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable Claims
Miles Brundage
Shahar Avin
Jasmine Wang
Haydn Belfield
Gretchen Krueger
Gillian K. Hadfield
Heidy Khlaaf
Jingying Yang
H. Toner
Ruth Catherine Fong
Pang Wei Koh
Sara Hooker
Jade Leung
Andrew John Trask
Emma Bluemke
Jonathan Lebensbold
Cullen C. O'keefe
Mark Koren
Th'eo Ryffel … (see 39 more)
JB Rubinovitz
Tamay Besiroglu
Federica Carugati
Jack Clark
Peter Eckersley
Sarah de Haas
Maritza L. Johnson
Ben Laurie
Alex Ingerman
Igor Krawczuk
Amanda Askell
Rosario Cammarota
A. Lohn
Charlotte Stix
Peter Mark Henderson
Logan Graham
Carina E. A. Prunkl
Bianca Martin
Elizabeth Seger
Noa Zilberman
Sean O hEigeartaigh
Frens Kroeger
Girish Sastry
R. Kagan
Adrian Weller
Brian Shek-kam Tse
Elizabeth Barnes
Allan Dafoe
Paul D. Scharre
Ariel Herbert-Voss
Martijn Rasser
Shagun Sodhani
Carrick Flynn
Thomas Krendl Gilbert
Lisa Dyer
Saif M. Khan
Markus Anderljung
COVI White Paper-Version 1.1
Hannah Alsdurf
Tristan Deleu
Prateek Gupta
Daphne Ippolito
Richard Janda
Max Jarvie
Tyler J. Kolody
Sekoul Krastev
Robert Obryk
Dan Pilat
Valerie Pisano
Benjamin Prud'homme
Meng Qu
Nasim Rahaman
Jean-franois Rousseau
Abhinav Sharma
Brooke Struck … (see 3 more)
Martin Weiss
Yun William Yu
The SARS-CoV-2 (Covid-19) pandemic has resulted in significant strain on health care and public health institutions around the world. Contac… (see more)t tracing is an essential tool for public health officials and local communities to change the course of the Covid-19 pandemic. Standard manual contact tracing of people infected with Covid-19, while the current gold standard, has significant challenges that limit the ability of public health authorities to minimize community infections. Personalized peer-to-peer contact tracing through the use of mobile applications has the potential to shift the paradigm of Covid-19 community spread. Although some countries have deployed centralized tracking systems through either GPS or Bluetooth, more privacy-protecting decentralized systems offer much of the same benefit without concentrating data in the hands of a state authority or in for-profit corporations. Additionally, machine learning methods can be used to circumvent some of the limitations of standard digital tracing by incorporating many clues (including medical conditions, self-reported symptoms, and numerous encounters with people at different risk levels, for different durations and distances) and their uncertainty into a more graded and precise estimation of infection and contagion risk. The estimated risk can be used to provide early risk awareness, personalized recommendations and relevant information to the user and connect them to health services. Finally, the non-identifying data about these risks can inform detailed epidemiological models trained jointly with the machine learning predictor, and these models can provide statistical evidence for the interaction and importance of different factors involved in the transmission of the disease. They can also be used to monitor, evaluate and optimize different health policy and confinement/deconfinement scenarios according to medical and economic productivity indicators. However, such a strategy based on mobile apps and machine learning should proactively mitigate potential ethical and privacy risks, which could have substantial impacts on society (not only impacts on health but also impacts such as stigmatization and abuse of personal data). Here, we present an overview of the rationale, design, ethical considerations and privacy strategy of ‘COVI,’ a Covid-19 public peer-to-peer contact tracing and risk awareness mobile application developed in Canada. Addendum 2020-07-14: The government of Canada has declined to endorse COVI and will be promoting a different app for decentralized contact tracing. In the interest of preventing fragmentation of the app landscape, COVI will therefore not be deployed to end users. We are currently still in the process of finalizing the project, and plan to release our code and models for academic consumption and to make them accessible to other States should they wish to deploy an app based on or inspired by said code and models. University of Ottawa, Mila, Université de Montréal, The Alan Turing Institute, University of Oxford, University of Pennsylvania, McGill University, Borden Ladner Gervais LLP, The Decision Lab, HEC Montréal, Max Planck Institute, Libéo, University of Toronto. Corresponding author general: richard.janda@mcgill.ca Corresponding author for public health: abhinav.sharma@mcgill.ca Corresponding author for privacy: ywyu@math.toronto.edu Corresponding author for machine learning: yoshua.bengio@mila.quebec Corresponding author for user perspective: brooke@thedecisionlab.com Corresponding author for technical implementation: jean-francois.rousseau@libeo.com 1 ar X iv :2 00 5. 08 50 2v 2 [ cs .C R ] 2 7 Ju l 2 02 0