Portrait of Hsiu-Chin Lin

Hsiu-Chin Lin

Associate Academic Member
Assistant Professor, McGill University, School of Computer Science
Research Topics
Autonomous Robotics Navigation
Climate Change
Deep Learning
Out-of-Distribution (OOD) Detection
Reinforcement Learning
Robotics

Biography

Hsiu-Chin Lin is an assistant professor at the School of Computer Science and in the Department of Electrical and Computer Engineering at McGill University.

Her research spans model-based motion control, optimization and machine learning for motion planning. She is particularly interested in adapting robot motion in dynamic environments for manipulators and quadruped robots.

Lin was formerly a research associate at the University of Edinburgh and the University of Birmingham. Her PhD research at the University of Edinburgh was on robot learning.

Current Students

PhD - McGill University
PhD - McGill University
PhD - McGill University
Co-supervisor :
Master's Research - McGill University
Principal supervisor :
Master's Research - McGill University
Principal supervisor :
Master's Research - McGill University

Publications

Generating Stable and Collision-Free Policies through Lyapunov Function Learning
Alexandre Coulombe
The need for rapid and reliable robot deployment is on the rise. Imitation Learning (IL) has become popular for producing motion planning po… (see more)licies from a set of demonstrations. However, many methods in IL are not guaranteed to produce stable policies. The generated policy may not converge to the robot target, reducing reliability, and may collide with its environment, reducing the safety of the system. Stable Estimator of Dynamic Systems (SEDS) produces stable policies by constraining the Lyapunov stability criteria during learning, but the Lyapunov candidate function had to be manually selected. In this work, we propose a novel method for learning a Lyapunov function and a collision-free policy using a single neural network model. The method can be equipped with an obstacle avoidance module for convex object pairs to guarantee no collisions. We demonstrated our method is capable of finding policies in several simulation environments and transfer to a real-world scenario.
Learning Lyapunov-Stable Polynomial Dynamical Systems Through Imitation
Imitation learning is a paradigm to address complex motion planning problems by learning a policy to imitate an expert’s behavior. However… (see more), relying solely on the expert’s data might lead to unsafe actions when the robot deviates from the demonstrated trajectories. Stability guarantees have previously been provided utilizing nonlinear dynamical systems, acting as high-level motion planners, in conjunction with the Lyapunov stability theorem. Yet, these methods are prone to inaccurate policies, high computational cost, sample inefficiency, or quasi stability when replicating complex and highly nonlinear trajectories. To mitigate this problem, we present an approach for learning a globally stable nonlinear dynamical system as a motion planning policy. We model the nonlinear dynamical system as a parametric polynomial and learn the polynomial’s coefficients jointly with a Lyapunov candidate. To showcase its success, we compare our method against the state of the art in simulation and conduct real-world experiments with the Kinova Gen3 Lite manipulator arm. Our experiments demonstrate the sample efficiency and reproduction accuracy of our method for various expert trajectories, while remaining stable in the face of perturbations.
Fractal impedance for passive controllers: a framework for interaction robotics
Keyhan Kouhkiloui Babarahmati
Carlo Tiseo
Joshua Smith
M. S. Erden
Michael Nalin Mistry
Fractal impedance for passive controllers: a framework for interaction robotics
Keyhan Kouhkiloui Babarahmati
Carlo Tiseo
Joshua Smith
Hsiu‐chin Lin
M. S. Erden
Michael Nalin Mistry