Portrait of Arna Ghosh

Arna Ghosh

Collaborating Alumni - McGill University
Supervisor
Research Topics
Computational Neuroscience
Computer Vision
Deep Learning
Dynamical Systems
Machine Learning Theory
Representation Learning

Publications

How gradient estimator variance and bias impact learning in neural networks
Yuhan Helena Liu
Konrad Paul Kording
There is growing interest in understanding how real brains may approximate gradients and how gradients can be used to train neuromorphic chi… (see more)ps. However, neither real brains nor neuromorphic chips can perfectly follow the loss gradient, so parameter updates would necessarily use gradient estimators that have some variance and/or bias. Therefore, there is a need to understand better how variance and bias in gradient estimators impact learning dependent on network and task properties. Here, we show that variance and bias can impair learning on the training data, but some degree of variance and bias in a gradient estimator can be beneficial for generalization. We find that the ideal amount of variance and bias in a gradient estimator are dependent on several properties of the network and task: the size and activity sparsity of the network, the norm of the gradient, and the curvature of the loss landscape. As such, whether considering biologically-plausible learning algorithms or algorithms for training neuromorphic chips, researchers can analyze these properties to determine whether their approximation to gradient descent will be effective for learning given their network and task properties.
H OW GRADIENT ESTIMATOR VARIANCE AND BIAS COULD IMPACT LEARNING IN NEURAL CIRCUITS
Yuhan Helena Liu
Konrad K¨ording
There is growing interest in understanding how real brains may approximate gradients and how gradients can be used to train neuromorphic chi… (see more)ps. However, neither real brains nor neuromorphic chips can perfectly follow the loss gradient, so parameter updates would necessarily use gradient estimators that have some variance and/or bias. Therefore, there is a need to understand better how variance and bias in gradient estimators impact learning dependent on network and task properties. Here, we show that variance and bias can impair learning on the training data, but some degree of variance and bias in a gradient estimator can be beneficial for generalization. We find that the ideal amount of variance and bias in a gradient estimator are dependent on several properties of the network and task: the size and activity sparsity of the network, the norm of the gradient, and the curvature of the loss landscape. As such, whether considering biologically-plausible learning algorithms or algorithms for training neuromorphic chips, researchers can analyze these properties to determine whether their approximation to gradient descent will be effective for learning given their network and task properties.
Current State and Future Directions for Learning in Biological Recurrent Neural Networks: A Perspective Piece
Luke Y. Prince
Ellen Boven
Joseph Pemberton
Franz Scherr
Claudia Clopath
Rui Ponte Costa
Wolfgang Maass
Cristina Savin
Katharina Wilmes
We provide a brief review of the common assumptions about biological learning with findings from experimental neuroscience and contrast them… (see more) with the efficiency of gradient-based learning in recurrent neural networks. The key issues discussed in this review include: synaptic plasticity, neural circuits, theory-experiment divide, and objective functions. We conclude with recommendations for both theoretical and experimental neuroscientists when designing new studies that could help bring clarity to these issues.
$\alpha$-ReQ : Assessing Representation Quality in Self-Supervised Learning by measuring eigenspectrum decay
Kumar Krishna Agrawal
Arnab Kumar Mondal
Self-Supervised Learning (SSL) with large-scale unlabelled datasets enables learning useful representations for multiple downstream tasks. H… (see more)owever, assessing the quality of such representations efficiently poses nontrivial challenges. Existing approaches train linear probes (with frozen features) to evaluate performance on a given task. This is expensive both computationally, since it requires retraining a new prediction head for each downstream task, and statistically, requires task-specific labels for multiple tasks. This poses a natural question, how do we efficiently determine the "goodness" of representations learned with SSL across a wide range of potential downstream tasks? In particular, a task-agnostic statistical measure of representation quality, that predicts generalization without explicit downstream task evaluation, would be highly desirable. In this work, we analyze characteristics of learned representations
Beyond accuracy: generalization properties of bio-plausible temporal credit assignment rules
Yuhan Helena Liu
Eric Todd SheaBrown
On the Varied Faces of Overparameterization in Supervised and Self-Supervised Learning
Matteo Gamba
Kumar Krishna
Agrawal
Blake A. Richards
Hossein Azizpour
Mårten Björkman
The quality of the representations learned by neural networks depends on several factors, including the loss function, learning algorithm, a… (see more)nd model architecture. In this work, we use information geometric measures to assess the representation quality in a principled manner. We demonstrate that the sensitivity of learned representations to input perturbations, measured by the spectral norm of the feature Jacobian, provides valuable information about downstream generalization. On the other hand, measuring the coefficient of spectral decay observed in the eigen-spectrum of feature covariance provides insights into the global representation geometry. First, we empirically establish an equivalence between these notions of representation quality and show that they are inversely correlated. Second, our analysis reveals the varying roles that overparameterization plays in improving generalization. Unlike supervised learning, we observe that increasing model width leads to higher discriminability and less smoothness in the self-supervised regime. Furthermore, we report that there is no observable double descent phenomenon in SSL with non-contrastive objectives for commonly used parameterization regimes, which opens up new opportunities for tight asymptotic analysis. Taken together, our results provide a loss-aware characterization of the different role of overparam-eterization in supervised and self-supervised learning.