Portrait of Andrea Lodi

Andrea Lodi

Associate Academic Member
Adjunct Professor, Polytechnique Montréal, Mathematics and Industrial Engineering Department
Founder and Scientific Director, IVADO Labs

Biography

Andrea Lodi is an adjunct professor in the Department of Mathematics and Industrial Engineering at Polytechnique Montréal, and founder and scientific director of IVADO Labs.

Since 2014, Lodi has held the Canada Excellence Research Chair in Data Science for Real-Time Decision-Making at Polytechnique Montréal. This is Canada’s leading research chair in the field of operations research.

Internationally recognized for his work on mixed linear and nonlinear programming, Lodi is focused on developing new models and algorithms to quickly and efficiently process massive amounts of data from multiple sources. These algorithms and models are expected to lead to the creation of optimized real-time decision-making strategies. The goal of his work as Chair is to apply this expertise in a range of sectors, including energy, transport, health, production and supply chain logistics management.

Lodi holds a PhD in systems engineering (2000) and is a full professor of operations research in the Department of Electrical, Electronic and Information Engineering at the University of Bologna. He coordinates large-scale European operations research projects, and has worked as a consultant for the CPLEX R&D team at IBM since 2006. Lodi has published over seventy articles in major journals in mathematical programming and also served as an associate editor for many of these journals.

His many honours include a 2010 Google Faculty Research Award and a 2011 IBM Faculty Award, and he was a member of the prestigious Herman Goldstine program at the IBM Thomas J. Watson Research Center in 2005–2006.

Publications

Predicting Tactical Solutions to Operational Planning Problems under Imperfect Information
Eric Larsen
Sébastien Lachapelle
This paper offers a methodological contribution at the intersection of machine learning and operations research. Namely, we propose a method… (see more)ology to quickly predict expected tactical descriptions of operational solutions (TDOSs). The problem we address occurs in the context of two-stage stochastic programming, where the second stage is demanding computationally. We aim to predict at a high speed the expected TDOS associated with the second-stage problem, conditionally on the first-stage variables. This may be used in support of the solution to the overall two-stage problem by avoiding the online generation of multiple second-stage scenarios and solutions. We formulate the tactical prediction problem as a stochastic optimal prediction program, whose solution we approximate with supervised machine learning. The training data set consists of a large number of deterministic operational problems generated by controlled probabilistic sampling. The labels are computed based on solutions to these problems (solved independently and offline), employing appropriate aggregation and subselection methods to address uncertainty. Results on our motivating application on load planning for rail transportation show that deep learning models produce accurate predictions in very short computing time (milliseconds or less). The predictive accuracy is close to the lower bounds calculated based on sample average approximation of the stochastic prediction programs.
Single Allocation Hub Location with Heterogeneous Economies of Scale
Borzou Rostami
Masoud Chitsaz
Okan Arslan
Gilbert Laporte
The economies of scale in hub location is usually modeled by a constant parameter, which captures the benefits companies obtain through cons… (see more)olidation. In their article “Single allocation hub location with heterogeneous economies of scale,” Rostami et al. relax this assumption and consider hub-hub connection costs as piecewise linear functions of the flow amounts. This spoils the triangular inequality property of the distance matrix, making the classical flow-based model invalid and further complicates the problem. The authors tackle the challenge by building a mixed-integer quadratically constrained program and by developing a methodology based on constructing Lagrangian function, linear dual functions, and specialized polynomial-time algorithms to generate enhanced cuts. The developed method offers a new strategy in Benders-type decomposition through relaxing a set of complicating constraints in subproblems when such relaxation is tight. The results confirm the efficacy of the solution methods in solving large-scale problem instances.
ZERO: Playing Mathematical Programming Games
Gabriele Dragotto
S. Sankaranarayanan
The Cut and Play Algorithm: Computing Nash Equilibria via Outer Approximations
Gabriele Dragotto
Sriram Sankaranarayanan
We introduce the Cut-and-Play, an efficient algorithm for computing equilibria in simultaneous non-cooperative games where players solve non… (see more)convex and possibly unbounded optimization problems. Our algorithm exploits an intrinsic relationship between the equilibria of the original nonconvex game and the ones of a convexified counterpart. In practice, Cut-and-Play formulates a series of convex approximations of the original game and refines them with techniques from integer programming, for instance, cutting planes and branching operations. We test our algorithm on two families of challenging nonconvex games involving discrete decisions and bilevel programs, and we empirically demonstrate that it efficiently computes equilibria and outperforms existing game-specific algorithms.
Capacity Planning in Stable Matching
Federico Bobbio
Ignacio Rios
Alfredo Torrico
We introduce the problem of jointly increasing school capacities and finding a student-optimal assignment in the expanded market. Due to the… (see more) impossibility of efficiently solving the problem with classical methods, we generalize existent mathematical programming formulations of stability constraints to our setting, most of which result in integer quadratically-constrained programs. In addition, we propose a novel mixed-integer linear programming formulation that is exponentially large on the problem size. We show that its stability constraints can be separated by exploiting the objective function, leading to an effective cutting-plane algorithm. We conclude the theoretical analysis of the problem by discussing some mechanism properties. On the computational side, we evaluate the performance of our approaches in a detailed study, and we find that our cutting-plane method outperforms our generalization of existing mixed-integer approaches. We also propose two heuristics that are effective for large instances of the problem. Finally, we use the Chilean school choice system data to demonstrate the impact of capacity planning under stability conditions. Our results show that each additional seat can benefit multiple students and that we can effectively target the assignment of previously unassigned students or improve the assignment of several students through improvement chains. These insights empower the decision-maker in tuning the matching algorithm to provide a fair application-oriented solution.
Guidelines for the Computational Testing of Machine Learning approaches to Vehicle Routing Problems
Luca Accorsi
Daniele Vigo
On the estimation of discrete choice models to capture irrational customer behaviors
Sanjay Dominik Jena
Claudio Sole
The random utility maximization model is by far the most adopted framework to estimate consumer choice behavior. However, behavioral economi… (see more)cs has provided strong empirical evidence of irrational choice behaviors, such as halo effects, that are incompatible with this framework. Models belonging to the random utility maximization family may therefore not accurately capture such irrational behavior. Hence, more general choice models, overcoming such limitations, have been proposed. However, the flexibility of such models comes at the price of increased risk of overfitting. As such, estimating such models remains a challenge. In this work, we propose an estimation method for the recently proposed generalized stochastic preference choice model, which subsumes the family of random utility maximization models and is capable of capturing halo effects. In particular, we propose a column-generation method to gradually refine the discrete choice model based on partially ranked preference sequences. Extensive computational experiments indicate that our model, explicitly accounting for irrational preferences, can significantly boost the predictive accuracy on both synthetic and real-world data instances. Summary of Contribution: In this work, we propose an estimation method for the recently proposed generalized stochastic preference choice model, which subsumes the family of random utility maximization models and is capable of capturing halo effects. Specifically, we show how to use partially ranked preferences to efficiently model rational and irrational customer types from transaction data. Our estimation procedure is based on column generation, where relevant customer types are efficiently extracted by expanding a treelike data structure containing the customer behaviors. Furthermore, we propose a new dominance rule among customer types whose effect is to prioritize low orders of interactions among products. An extensive set of experiments assesses the predictive accuracy of the proposed approach by comparing it against rank-based methods with only rational preferences and with more general benchmarks from the literature. Our results show that accounting for irrational preferences can boost predictive accuracy by 12.5% on average when tested on a real-world data set from a large chain of grocery and drug stores.
On generalized surrogate duality in mixed-integer nonlinear programming
Benjamin Muller
Gonzalo Munoz
Ambros Gleixner
Felipe Serrano
Measures of balance in combinatorial optimization
Philippe Olivier
Gilles Pesant
Measures of balance in combinatorial optimization
Philippe Olivier
G. Pesant
Assessing the Impact: Does an Improvement to a Revenue Management System Lead to an Improved Revenue?
Capacity Expansion in the College Admission Problem
Federico Bobbio
Alfredo Torrico