Portrait of Andrea Lodi

Andrea Lodi

Associate Academic Member
Adjunct Professor, Polytechnique Montréal, Mathematics and Industrial Engineering Department
Founder and Scientific Director, IVADO Labs

Biography

Andrea Lodi is an adjunct professor in the Department of Mathematics and Industrial Engineering at Polytechnique Montréal, and founder and scientific director of IVADO Labs.

Since 2014, Lodi has held the Canada Excellence Research Chair in Data Science for Real-Time Decision-Making at Polytechnique Montréal. This is Canada’s leading research chair in the field of operations research.

Internationally recognized for his work on mixed linear and nonlinear programming, Lodi is focused on developing new models and algorithms to quickly and efficiently process massive amounts of data from multiple sources. These algorithms and models are expected to lead to the creation of optimized real-time decision-making strategies. The goal of his work as Chair is to apply this expertise in a range of sectors, including energy, transport, health, production and supply chain logistics management.

Lodi holds a PhD in systems engineering (2000) and is a full professor of operations research in the Department of Electrical, Electronic and Information Engineering at the University of Bologna. He coordinates large-scale European operations research projects, and has worked as a consultant for the CPLEX R&D team at IBM since 2006. Lodi has published over seventy articles in major journals in mathematical programming and also served as an associate editor for many of these journals.

His many honours include a 2010 Google Faculty Research Award and a 2011 IBM Faculty Award, and he was a member of the prestigious Herman Goldstine program at the IBM Thomas J. Watson Research Center in 2005–2006.

Publications

Structured Pruning of Neural Networks for Constraints Learning
Matteo Cacciola
Antonio Frangioni
In recent years, the integration of Machine Learning (ML) models with Operation Research (OR) tools has gained popularity across diverse app… (see more)lications, including cancer treatment, algorithmic configuration, and chemical process optimization. In this domain, the combination of ML and OR often relies on representing the ML model output using Mixed Integer Programming (MIP) formulations. Numerous studies in the literature have developed such formulations for many ML predictors, with a particular emphasis on Artificial Neural Networks (ANNs) due to their significant interest in many applications. However, ANNs frequently contain a large number of parameters, resulting in MIP formulations that are impractical to solve, thereby impeding scalability. In fact, the ML community has already introduced several techniques to reduce the parameter count of ANNs without compromising their performance, since the substantial size of modern ANNs presents challenges for ML applications as it significantly impacts computational efforts during training and necessitates significant memory resources for storage. In this paper, we showcase the effectiveness of pruning, one of these techniques, when applied to ANNs prior to their integration into MIPs. By pruning the ANN, we achieve significant improvements in the speed of the solution process. We discuss why pruning is more suitable in this context compared to other ML compression techniques, and we identify the most appropriate pruning strategies. To highlight the potential of this approach, we conduct experiments using feed-forward neural networks with multiple layers to construct adversarial examples. Our results demonstrate that pruning offers remarkable reductions in solution times without hindering the quality of the final decision, enabling the resolution of previously unsolvable instances.
Capacity Planning in Stable Matching: An Application to School Choice
Federico Bobbio
Ignacio Rios
Alfredo Torrico
Centralized mechanisms are becoming the standard approach to solve several assignment problems. Examples include the allocation of students … (see more)to schools (school choice), high-school graduates to colleges, residents to hospitals and refugees to cities. In most of these markets, a desirable property of the assignment is stability, which guarantees that no pair of agents has incentive to circumvent the matching. Using school choice as our matching market application, we introduce the problem of jointly allocating a school capacity expansion and finding the best stable matching for the students in the expanded market. We analyze theoretically the problem, focusing on the trade-off behind the multiplicity of student-optimal assignments, and the problem complexity. Since the theoretical intractability of the problem precludes the adaptation of classical approaches to solve it efficiently, we generalize existent mathematical programming formulations of stability constraints to our setting. These generalizations result in integer quadratically-constrained programs, which are computationally hard to solve. In addition, we propose a novel mixed-integer linear programming formulation that is exponentially-large on the problem size. We show that the stability constraints can be separated in linear time, leading to an effective cutting-plane method. We evaluate the performance of our approaches in a detailed computational study, and we find that our cutting-plane method outperforms mixed-integer programming solvers applied to existent formulations extended to our problem setting. We also propose two heuristics that are effective for large instances of the problem. Finally, we use the Chilean school choice system data to demonstrate the impact of capacity planning under stability conditions. Our results show that each additional school seat can benefit multiple students. On the one hand, we can focus on access by prioritizing extra seats that benefit previously unassigned students; on the other hand, we can focus on merit by allocating extra seats that benefit several students via chains of improvement. These insights empower the decision-maker in tuning the matching algorithm to provide a fair application-oriented solution.
Continuous cutting plane algorithms in integer programming
Didier Chételat
A solution algorithm for chance-constrained problems with integer second-stage recourse decisions
Enrico Malaguti
Michele Monaci
Giacomo Nannicini
Paolo
Paronuzzi
Integer Programming Games: A Gentle Computational Overview
Gabriele Dragotto
Sriram Sankaranarayan
Predicting Time to and Average Quality of Future Offers for Kidney Transplant Candidates Declining a Current Deceased Donor Kidney Offer: A Retrospective Cohort Study
Jonathan Jalbert
Jean-Noel Weller
Pierre-Luc Boivin
Sylvain Lavigne
Mehdi Taobane
Mike Pieper
Heloise Cardinal
Machine-learning-based arc selection for constrained shortest path problems in column generation
Mouad Morabit
Guy Desaulniers
Column generation is an iterative method used to solve a variety of optimization problems. It decomposes the problem into two parts: a maste… (see more)r problem and one or more pricing problems (PP). The total computing time taken by the method is divided between these two parts. In routing or scheduling applications, the problems are mostly defined on a network, and the PP is usually an NP-hard shortest path problem with resource constraints. In this work, we propose a new heuristic pricing algorithm based on machine learning. By taking advantage of the data collected during previous executions, the objective is to reduce the size of the network and accelerate the PP, keeping only the arcs that have a high chance to be part of the linear relaxation solution. The method has been applied to two specific problems: the vehicle and crew scheduling problem in public transit and the vehicle routing problem with time windows. Reductions in computational time of up to 40% can be obtained.
The Critical Node Game
Gabriele Dragotto
Amine Boukhtouta
Mehdi Taobane
Cloud networks are the backbone of the modern distributed internet infrastructure as they provision most of the on-demand resources organiza… (see more)tions and individuals use daily. However, any abrupt cyber-attack could disrupt the provisioning of some of the cloud resources fulfilling the needs of customers, industries, and governments. In this work, we introduce a game-theoretic model that assesses the cyber-security risk of cloud networks and informs security experts on the optimal security strategies. Our approach combines game theory, combinatorial optimization, and cyber-security and aims at minimizing the unexpected network disruptions caused by malicious cyber-attacks under uncertainty. Methodologically, our approach consists of a simultaneous and non-cooperative attacker-defender game where each player solves a combinatorial optimization problem parametrized in the variables of the other player. Practically, our approach enables security experts to (i.) assess the security posture of the cloud network, and (ii.) dynamically adapt the level of cyber-protection deployed on the network. We provide a detailed analysis of a real-world cloud network and demonstrate the efficacy of our approach through extensive computational tests.
A Convex Reformulation and an Outer Approximation for a Large Class of Binary Quadratic Programs
Borzou Rostami
Fausto Errico
Game theoretical analysis of Kidney Exchange Programs
Cutting Planes from the Branch-and-Bound Tree: Challenges and Opportunities
Claudio Contardo
Andrea Tramontani
Optimizing Fairness over Time with Homogeneous Workers (Short Paper).
Bart-jan Van Rossum
Rui Chen