Portrait de Pierre-Luc Bacon

Pierre-Luc Bacon

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, Université de Montréal, Département d'informatique et de recherche opérationnelle

Biographie

Pierre-Luc Bacon est professeur agrégé au Département d'informatique et de recherche opérationnelle de l'Université de Montréal. Il est également membre de Mila – Institut québécois d’intelligence artificielle et d’IVADO et titulaire d'une chaire Facebook-CIFAR. Il dirige un groupe de recherche qui travaille sur le défi posé par la malédiction de l'horizon dans l'apprentissage par renforcement et le contrôle optimal.

Étudiants actuels

Doctorat - Université de Montréal
Doctorat - Université de Montréal
Stagiaire de recherche - Université de Montréal
Postdoctorat - Université de Montréal
Collaborateur·rice alumni
Collaborateur·rice de recherche - University of Trento
Postdoctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Polytechnique Montréal
Superviseur⋅e principal⋅e :
Stagiaire de recherche - Université de Montréal
Maîtrise recherche - Université de Montréal
Maîtrise recherche - Université de Montréal
Doctorat - Université de Montréal
Doctorat - Université de Montréal
Doctorat - Université de Montréal
Co-superviseur⋅e :
Stagiaire de recherche - Université de Montréal
Maîtrise recherche - Université de Montréal
Doctorat - Université de Montréal
Doctorat - Polytechnique Montréal
Superviseur⋅e principal⋅e :

Publications

Goal-conditioned GFlowNets for Controllable Multi-Objective Molecular Design
Julien Roy
Emmanuel Bengio
In recent years, in-silico molecular design has received much attention from the machine learning community. When designing a new compound f… (voir plus)or pharmaceutical applications, there are usually multiple properties of such molecules that need to be optimised: binding energy to the target, synthesizability, toxicity, EC50, and so on. While previous approaches have employed a scalarization scheme to turn the multi-objective problem into a preference-conditioned single objective, it has been established that this kind of reduction may produce solutions that tend to slide towards the extreme points of the objective space when presented with a problem that exhibits a concave Pareto front. In this work we experiment with an alternative formulation of goal-conditioned molecular generation to obtain a more controllable conditional model that can uniformly explore solutions along the entire Pareto front.
Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier
Pierluca D'Oro
Max Schwarzer
Evgenii Nikishin
Increasing the replay ratio, the number of updates of an agent's parameters per environment interaction, is an appealing strategy for improv… (voir plus)ing the sample efficiency of deep reinforcement learning algorithms. In this work, we show that fully or partially resetting the parameters of deep reinforcement learning agents causes better replay ratio scaling capabilities to emerge. We push the limits of the sample efficiency of carefully-modified algorithms by training them using an order of magnitude more updates than usual, significantly improving their performance in the Atari 100k and DeepMind Control Suite benchmarks. We then provide an analysis of the design choices required for favorable replay ratio scaling to be possible and discuss inherent limits and tradeoffs.
Block-State Transformers
Mahan Fathi
Jonathan Pilault
Orhan Firat
Ross Goroshin
Options of Interest: Temporal Abstraction with Interest Functions
Martin Klissarov
Maxime Chevalier-Boisvert
Temporal abstraction refers to the ability of an agent to use behaviours of controllers which act for a limited, variable amount of time. Th… (voir plus)e options framework describes such behaviours as consisting of a subset of states in which they can initiate, an internal policy and a stochastic termination condition. However, much of the subsequent work on option discovery has ignored the initiation set, because of difficulty in learning it from data. We provide a generalization of initiation sets suitable for general function approximation, by defining an interest function associated with an option. We derive a gradient-based learning algorithm for interest functions, leading to a new interest-option-critic architecture. We investigate how interest functions can be leveraged to learn interpretable and reusable temporal abstractions. We demonstrate the efficacy of the proposed approach through quantitative and qualitative results, in both discrete and continuous environments.