Portrait de Michel Ma n'est pas disponible

Michel Ma

Doctorat - Université de Montréal
Superviseur⋅e principal⋅e

Publications

Do Transformer World Models Give Better Policy Gradients?
Michel Ma
Tianwei Ni
Clement Gehring
Pierluca D'Oro
Bridging State and History Representations: Understanding Self-Predictive RL
Tianwei Ni
Benjamin Eysenbach
Erfan SeyedSalehi
Michel Ma
Clement Gehring
Representations are at the core of all deep reinforcement learning (RL) methods for both Markov decision processes (MDPs) and partially obse… (voir plus)rvable Markov decision processes (POMDPs). Many representation learning methods and theoretical frameworks have been developed to understand what constitutes an effective representation. However, the relationships between these methods and the shared properties among them remain unclear. In this paper, we show that many of these seemingly distinct methods and frameworks for state and history abstractions are, in fact, based on a common idea of self-predictive abstraction. Furthermore, we provide theoretical insights into the widely adopted objectives and optimization, such as the stop-gradient technique, in learning self-predictive representations. These findings together yield a minimalist algorithm to learn self-predictive representations for states and histories. We validate our theories by applying our algorithm to standard MDPs, MDPs with distractors, and POMDPs with sparse rewards. These findings culminate in a set of preliminary guidelines for RL practitioners.
When Do Transformers Shine in RL? Decoupling Memory from Credit Assignment
Tianwei Ni
Michel Ma
Benjamin Eysenbach
Reinforcement learning (RL) algorithms face two distinct challenges: learning effective representations of past and present observations, an… (voir plus)d determining how actions influence future returns. Both challenges involve modeling long-term dependencies. The Transformer architecture has been very successful to solve problems that involve long-term dependencies, including in the RL domain. However, the underlying reason for the strong performance of Transformer-based RL methods remains unclear: is it because they learn effective memory, or because they perform effective credit assignment? After introducing formal definitions of memory length and credit assignment length, we design simple configurable tasks to measure these distinct quantities. Our empirical results reveal that Transformers can enhance the memory capability of RL algorithms, scaling up to tasks that require memorizing observations