Portrait de Jian Tang

Jian Tang

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur agrégé, HEC Montréal, Département de sciences de la décision
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle
Président, China Longyuan Power Group Corporation

Biographie

Jian Tang est professeur associé à Mila – Institut québécois d’intelligence artificielle. Il est également titulaire d'une chaire de recherche en IA Canada-CIFAR et fondateur de BioGeometry, une startup spécialisée dans l'IA générative pour la découverte d'anticorps. Ses principaux domaines de recherche sont les modèles génératifs profonds, l'apprentissage automatique des graphes et leurs applications à la découverte de médicaments. Il est un leader international dans le domaine de l'apprentissage automatique des graphes, et son travail représentatif sur l'apprentissage de la représentation des nœuds, LINE, a été largement reconnu et cité plus de 5 000 fois. Il a également réalisé de nombreux travaux pionniers sur l'IA pour la découverte de médicaments, notamment le premier cadre d'apprentissage automatique à source ouverte pour la découverte de médicaments, TorchDrug et TorchProtein.

Étudiants actuels

Doctorat - Université de Montréal
Maîtrise recherche - Université de Montréal
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Doctorat - Université de Montréal
Doctorat - Université de Montréal
Doctorat - Université de Montréal
Doctorat - Université de Montréal
Collaborateur·rice de recherche
Stagiaire de recherche - HEC Montréal
Doctorat - Université de Montréal
Co-superviseur⋅e :
Doctorat - Université de Montréal
Stagiaire de recherche - Beijing Institute of Technology
Doctorat - Université de Montréal
Doctorat - Université de Montréal

Publications

Protein Sequence and Structure Co-Design with Equivariant Translation
Chence Shi
Chuanrui Wang
Jiarui Lu
Bozitao Zhong
Proteins are macromolecules that perform essential functions in all living organisms. Designing novel proteins with specific structures and … (voir plus)desired functions has been a long-standing challenge in the field of bioengineering. Existing approaches generate both protein sequence and structure using either autoregressive models or diffusion models, both of which suffer from high inference costs. In this paper, we propose a new approach capable of protein sequence and structure co-design, which iteratively translates both protein sequence and structure into the desired state from random initialization, based on context features given a priori. Our model consists of a trigonometry-aware encoder that reasons geometrical constraints and interactions from context features, and a roto-translation equivariant decoder that translates protein sequence and structure interdependently. Notably, all protein amino acids are updated in one shot in each translation step, which significantly accelerates the inference process. Experimental results across multiple tasks show that our model outperforms previous state-of-the-art baselines by a large margin, and is able to design proteins of high fidelity as regards both sequence and structure, with running time orders of magnitude less than sampling-based methods.
FusionRetro: Molecule Representation Fusion via Reaction Graph for Retrosynthetic Planning
Songtao Liu
Zhengkai Tu
Minkai Xu
Zuobai Zhang
Peilin Zhao
Rex Ying
Lu Lin
Dinghao Wu
Retrosynthetic planning is a fundamental problem in drug discovery and organic chemistry, which aims to find a complete multi-step syntheti… (voir plus)c route from a set of starting materials to the target molecule, determining crucial process flow in chemical production. Existing approaches combine single-step retrosynthesis models and search algorithms to find synthetic routes. However, these approaches generally consider the two pieces in a decoupled manner, taking only the product as the input to predict the reactants per planning step and largely ignoring the important context information from other intermediates along the synthetic route. In this work, we perform a series of experiments to identify the limitations of this decoupled view and propose a novel retrosynthesis framework that also exploits context information for retrosynthetic planning. We view synthetic routes as reaction graphs, and propose to incorporate the context by three principled steps: encode molecules into embeddings, aggregate information over routes, and readout to predict reactants. The whole framework can be efficiently optimized in an end-to-end fashion. Comprehensive experiments show that by fusing in context information over routes, our model sig-nificantly improves the performance of retrosyn-thetic planning over baselines that are not context-aware, especially for long synthetic routes.
FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning
Songtao Liu
Zhengkai Tu
Minkai Xu
Zuobai Zhang
Lu Lin
Rex Ying
Zhitao Ying
Peilin Zhao
Dinghao Wu
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining
Shengchao Liu
weitao Du
Zhi-Ming Ma
Hongyu Guo
Molecule pretraining has quickly become the go-to schema to boost the performance of AI-based drug discovery. Naturally, molecules can be re… (voir plus)presented as 2D topological graphs or 3D geometric point clouds. Although most existing pertaining methods focus on merely the single modality, recent research has shown that maximizing the mutual information (MI) between such two modalities enhances the molecule representation ability. Meanwhile, existing molecule multi-modal pretraining approaches approximate MI based on the representation space encoded from the topology and geometry, thus resulting in the loss of critical structural information of molecules. To address this issue, we propose MoleculeSDE. MoleculeSDE leverages group symmetric (e.g., SE(3)-equivariant and reflection-antisymmetric) stochastic differential equation models to generate the 3D geometries from 2D topologies, and vice versa, directly in the input space. It not only obtains tighter MI bound but also enables prosperous downstream tasks than the previous work. By comparing with 17 pretraining baselines, we empirically verify that MoleculeSDE can learn an expressive representation with state-of-the-art performance on 26 out of 32 downstream tasks.
Physics-Inspired Protein Encoder Pre-Training via Siamese Sequence-Structure Diffusion Trajectory Prediction
Zuobai Zhang
Minghao Xu
Aurelie Lozano
Vijil Chenthamarakshan
Payel Das
Pre-training methods on proteins are recently gaining interest, leveraging either protein sequences or structures, while modeling their join… (voir plus)t energy landscape is largely unexplored. In this work, inspired by the success of denoising diffusion models, we propose the DiffPreT approach to pre-train a protein encoder by sequence-structure multimodal diffusion modeling. DiffPreT guides the encoder to recover the native protein sequences and structures from the perturbed ones along the multimodal diffusion trajectory, which acquires the joint distribution of sequences and structures. Considering the essential protein conformational variations, we enhance DiffPreT by a physics-inspired method called Siamese Diffusion Trajectory Prediction ( SiamDiff ) to capture the correlation between different conformers of a protein. SiamDiff attains this goal by maximizing the mutual information between representations of diffusion trajectories of structurally-correlated conformers. We study the effectiveness of DiffPreT and SiamDiff on both atom-and residue-level structure-based protein understanding tasks. Experimental results show that the performance of DiffPreT is consistently competitive on all tasks, and SiamDiff achieves new state-of-the-art performance, considering the mean ranks on all tasks. The source code will be released upon acceptance.
GraphCG: Unsupervised Discovery of Steerable Factors in Graphs
Shengchao Liu
Chengpeng Wang
Weili Nie
Hanchen Wang
Jiarui Lu
Bolei Zhou
Deep generative models have been extensively explored recently, especially for the graph data such as molecular graphs and point clouds. Yet… (voir plus), much less investigation has been carried out on understanding the learned latent space of deep graph generative models. Such understandings can open up a unified perspective and provide guidelines for essential tasks like controllable generation. In this paper, we first examine the representation space of the recent deep generative model trained for graph data, observing that the learned representation space is not perfectly disentangled. Based on this observation, we then propose an unsupervised method called GraphCG, which is model-agnostic and task-agnostic for discovering steerable factors in graph data. Specifically, GraphCG learns the semantic-rich directions via maximizing the corresponding mutual information, where the edited graph along the same direction will possess certain steerable factors. We conduct experiments on two types of graph data, molecular graphs and point clouds. Both the quantitative and qualitative results show the effectiveness of GraphCG for discovering steerable factors. The code will be public in the near future.
Flaky Performances when Pretraining on Relational Databases
Shengchao Liu
David Vazquez
Pierre-Andre Noel
Implications of Topological Imbalance for Representation Learning on Biomedical Knowledge Graphs
Stephen Bonner
Ufuk Kirik
Ola Engkvist
Ian P Barrett
Adoption of recently developed methods from machine learning has given rise to creation of drug-discovery knowledge graphs (KGs) that utiliz… (voir plus)e the interconnected nature of the domain. Graph-based modelling of the data, combined with KG embedding (KGE) methods, are promising as they provide a more intuitive representation and are suitable for inference tasks such as predicting missing links. One common application is to produce ranked lists of genes for a given disease, where the rank is based on the perceived likelihood of association between the gene and the disease. It is thus critical that these predictions are not only pertinent but also biologically meaningful. However, KGs can be biased either directly due to the underlying data sources that are integrated or due to modelling choices in the construction of the graph, one consequence of which is that certain entities can get topologically overrepresented. We demonstrate the effect of these inherent structural imbalances, resulting in densely connected entities being highly ranked no matter the context. We provide support for this observation across different datasets, models as well as predictive tasks. Further, we present various graph perturbation experiments which yield more support to the observation that KGE models can be more influenced by the frequency of entities rather than any biological information encoded within the relations. Our results highlight the importance of data modelling choices, and emphasizes the need for practitioners to be mindful of these issues when interpreting model outputs and during KG composition.
Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering
Jing Zhang
Xiaokang Zhang
Jifan Yu
Jie Tang
Cuiping Li
Hong Chen
Subgraph Retrieval Enhanced Model for Multi-hop Knowledge Base Question Answering
Jing Zhang
Xiaokang Zhang
Jifan Yu
Jie Tang
Cuiping Li
Hong Chen
Recent works on knowledge base question answering (KBQA) retrieve subgraphs for easier reasoning. The desired subgraph is crucial as a small… (voir plus) one may exclude the answer but a large one might introduce more noises. However, the existing retrieval is either heuristic or interwoven with the reasoning, causing reasoning on the partial subgraphs, which increases the reasoning bias when the intermediate supervision is missing. This paper proposes a trainable subgraph retriever (SR) decoupled from the subsequent reasoning process, which enables a plug-and-play framework to enhance any subgraph-oriented KBQA model. Extensive experiments demonstrate SR achieves significantly better retrieval and QA performance than existing retrieval methods. Via weakly supervised pre-training as well as the end-to-end fine-tuning, SR achieves new state-of-the-art performance when combined with NSM (He et al., 2021), a subgraph-oriented reasoner, for embedding-based KBQA methods. Codes and datasets are available online (https://github.com/RUCKBReasoning/SubgraphRetrievalKBQA)
High-Order Pooling for Graph Neural Networks with Tensor Decomposition
Metro: Memory-Enhanced Transformer for Retrosynthetic Planning via Reaction Tree
Songtao Liu
Rex Ying
Zhitao Ying
Zuobai Zhang
Peilin Zhao
Lu Lin
Dinghao Wu
Retrosynthetic planning plays a critical role in drug discovery and organic chemistry. Starting from a target molecule as the root node, it … (voir plus)aims to find a complete reaction tree subject to the constraint that all leaf nodes belong to a set of starting materials. The multi-step reactions are crucial because they determine the flow chart in the production of the Organic Chemical Industry. However, existing datasets lack curation of tree-structured multi-step reactions, and fail to provide such reaction trees, limiting models’ understanding of organic molecule transformations. In this work, we first develop a benchmark curated for the retrosynthetic planning task, which consists of 124,869 reaction trees retrieved from the public USPTO-full dataset. On top of that, we propose Metro: Memory-Enhanced Transformer for RetrOsynthetic planning. Specifically, the dependency among molecules in the reaction tree is captured as context information for multi-step retrosynthesis predictions through transformers with a memory module. Extensive experiments show that Metro dramatically outperforms existing single-step retrosynthesis models by at least 10.7% in top-1 accuracy. The experiments demonstrate the superiority of exploiting context information in the retrosynthetic planning task. Moreover, the proposed model can be directly used for synthetic accessibility analysis, as it is trained on reaction trees with the shortest depths. Our work is the first step towards a brand new formulation for retrosynthetic planning in the aspects of data construction, model design, and evaluation. Code is available at https://github.com/SongtaoLiu0823/metro.