Portrait de Eugene Belilovsky n'est pas disponible

Eugene Belilovsky

Membre académique associé
Professeur adjoint, Concordia University, Département d'informatique et de génie logiciel
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle

Biographie

Eugene Belilovsky est professeur adjoint au Département d'informatique et de génie logiciel de l'Université Concordia. Il est également membre associé de Mila – Institut québécois d’intelligence artificielle et professeur adjoint à l'Université de Montréal. Ses travaux se concentrent sur la vision par ordinateur et l'apprentissage profond. Ses intérêts de recherche actuels comprennent l'apprentissage continu, l'apprentissage à partir de peu de données (few-shot learning) et leurs applications au carrefour de la vision par ordinateur et du traitement du langage.

Étudiants actuels

Doctorat - Concordia University
Doctorat - Concordia University
Co-superviseur⋅e :
Maîtrise recherche - Concordia University
Doctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Maîtrise recherche - Université de Montréal
Co-superviseur⋅e :
Maîtrise recherche - Concordia University
Collaborateur·rice de recherche - Concordia University
Co-superviseur⋅e :
Postdoctorat - Concordia University
Co-superviseur⋅e :
Doctorat - Concordia University
Co-superviseur⋅e :
Maîtrise recherche - Concordia University
Stagiaire de recherche - Concordia University
Maîtrise recherche - Concordia University
Co-superviseur⋅e :
Collaborateur·rice alumni
Co-superviseur⋅e :
Maîtrise recherche - Concordia University
Maîtrise recherche - Concordia University
Collaborateur·rice de recherche - Université de Montréal
Superviseur⋅e principal⋅e :
Doctorat - Concordia University
Co-superviseur⋅e :
Maîtrise recherche - Concordia University

Publications

Online Continual Learning with Maximally Interfered Retrieval
Rahaf Aljundi
Lucas Caccia
Massimo Caccia
Min Lin
Tinne Tuytelaars
Continual learning, the setting where a learning agent is faced with a never ending stream of data, continues to be a great challenge for mo… (voir plus)dern machine learning systems. In particular the online or "single-pass through the data" setting has gained attention recently as a natural setting that is difficult to tackle. Methods based on replay, either generative or from a stored memory, have been shown to be effective approaches for continual learning, matching or exceeding the state of the art in a number of standard benchmarks. These approaches typically rely on randomly selecting samples from the replay memory or from a generative model, which is suboptimal. In this work, we consider a controlled sampling of memories for replay. We retrieve the samples which are most interfered, i.e. whose prediction will be most negatively impacted by the foreseen parameters update. We show a formulation for this sampling criterion in both the generative replay and the experience replay setting, producing consistent gains in performance and greatly reduced forgetting. We release an implementation of our method at this https URL.
Learning Optimizers for Local SGD
Charles-Étienne Joseph
Benjamin Thérien
Abhinav Moudgil
Boris Knyazev
Communication-efficient variants of SGD, specifically local SGD, have received a great deal of interest in recent years. These approaches co… (voir plus)mpute multiple gradient steps locally, that is on each worker, before averaging model parameters, helping relieve the critical communication bottleneck in distributed deep learning training. Although many variants of these approaches have been proposed, they can sometimes lag behind state-of-the-art optimizers for deep learning. In this work, we incorporate local optimizers that compute multiple updates into a learned optimization framework, allowing to meta-learn potentially more efficient local SGD algorithms. Our results demonstrate that local learned optimizers can substantially outperform local SGD and its sophisticated variants while maintaining their communication efficiency. We show that the learned optimizers can generalize to new datasets and architectures, demonstrating the potential of learned optimizers for improving communication-efficient distributed learning.