Portrait de David Rolnick

David Rolnick

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, McGill University, École d'informatique
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle

Biographie

David Rolnick est professeur adjoint et titulaire d’une chaire en IA Canada-CIFAR à l'École d'informatique de l'Université McGill et membre académique principal de Mila – Institut québécois d’intelligence artificielle. Ses travaux portent sur les applications de l'apprentissage automatique dans la lutte contre le changement climatique. Il est cofondateur et président de Climate Change AI et codirecteur scientifique de Sustainability in the Digital Age. David Rolnick a obtenu un doctorat en mathématiques appliquées du Massachusetts Institute of Technology (MIT). Il a été chercheur postdoctoral en sciences mathématiques à la National Science Foundation (NSF), chercheur diplômé à la NSF et boursier Fulbright. Il a figuré sur la liste des « 35 innovateurs de moins de 35 ans » de la MIT Technology Review en 2021.

Étudiants actuels

Postdoctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Université Paris-Saclay
Co-superviseur⋅e :
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Co-superviseur⋅e :
Maîtrise recherche - McGill University
Collaborateur·rice de recherche
Stagiaire de recherche - Johannes Kepler University
Postdoctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Stagiaire de recherche
Stagiaire de recherche - Université de Montréal
Maîtrise recherche - McGill University
Stagiaire de recherche - Université de Montréal
Collaborateur·rice de recherche - Karlsruhe Institute of Technology
Collaborateur·rice de recherche
Stagiaire de recherche - Osnabrueck university
Maîtrise recherche - McGill University
Collaborateur·rice de recherche - McGill University
Collaborateur·rice de recherche - The University of Dresden, Helmholtz Centre for Environmental Research Leipzig
Collaborateur·rice de recherche - National Observatory of Athens
Collaborateur·rice de recherche
Collaborateur·rice de recherche - KU Leuven
Stagiaire de recherche - Cambridge University
Collaborateur·rice de recherche
Co-superviseur⋅e :
Postdoctorat - McGill University
Doctorat - Université de Montréal
Collaborateur·rice de recherche - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Co-superviseur⋅e :
Maîtrise recherche - McGill University

Publications

TIML: Task-Informed Meta-Learning for Agriculture
Gabriel Tseng
Hannah Kerner
Labeled datasets for agriculture are extremely spatially imbalanced. When developing algorithms for data-sparse regions, a natural approach … (voir plus)is to use transfer learning from data-rich regions. While standard transfer learning approaches typically leverage only direct inputs and outputs, geospatial imagery and agricultural data are rich in metadata that can inform transfer learning algorithms, such as the spatial coordinates of data-points or the class of task being learned. We build on previous work exploring the use of meta-learning for agricultural contexts in data-sparse regions and introduce task-informed meta-learning (TIML), an augmentation to model-agnostic meta-learning which takes advantage of task-specific metadata. We apply TIML to crop type classification and yield estimation, and find that TIML significantly improves performance compared to a range of benchmarks in both contexts, across a diversity of model architectures. While we focus on tasks from agriculture, TIML could offer benefits to any meta-learning setup with task-specific metadata, such as classification of geo-tagged images and species distribution modelling.
Understanding the Evolution of Linear Regions in Deep Reinforcement Learning
Setareh Cohan
Nam Hee Gordon Kim
Michiel van de Panne
Policies produced by deep reinforcement learning are typically characterised by their learning curves, but they remain poorly understood in … (voir plus)many other respects. ReLU-based policies result in a partitioning of the input space into piecewise linear regions. We seek to understand how observed region counts and their densities evolve during deep reinforcement learning using empirical results that span a range of continuous control tasks and policy network dimensions. Intuitively, we may expect that during training, the region density increases in the areas that are frequently visited by the policy, thereby affording fine-grained control. We use recent theoretical and empirical results for the linear regions induced by neural networks in supervised learning settings for grounding and comparison of our results. Empirically, we find that the region density increases only moderately throughout training, as measured along fixed trajectories coming from the final policy. However, the trajectories themselves also increase in length during training, and thus the region densities decrease as seen from the perspective of the current trajectory. Our findings suggest that the complexity of deep reinforcement learning policies does not principally emerge from a significant growth in the complexity of functions observed on-and-around trajectories of the policy.