Portrait de David Rolnick

David Rolnick

Membre académique principal
Chaire en IA Canada-CIFAR
Professeur adjoint, McGill University, École d'informatique
Professeur associé, Université de Montréal, Département d'informatique et de recherche opérationnelle

Biographie

David Rolnick est professeur adjoint et titulaire d’une chaire en IA Canada-CIFAR à l'École d'informatique de l'Université McGill et membre académique principal de Mila – Institut québécois d’intelligence artificielle. Ses travaux portent sur les applications de l'apprentissage automatique dans la lutte contre le changement climatique. Il est cofondateur et président de Climate Change AI et codirecteur scientifique de Sustainability in the Digital Age. David Rolnick a obtenu un doctorat en mathématiques appliquées du Massachusetts Institute of Technology (MIT). Il a été chercheur postdoctoral en sciences mathématiques à la National Science Foundation (NSF), chercheur diplômé à la NSF et boursier Fulbright. Il a figuré sur la liste des « 35 innovateurs de moins de 35 ans » de la MIT Technology Review en 2021.

Étudiants actuels

Postdoctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Collaborateur·rice de recherche - Université Paris-Saclay
Co-superviseur⋅e :
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Collaborateur·rice de recherche
Co-superviseur⋅e :
Maîtrise recherche - McGill University
Collaborateur·rice de recherche
Stagiaire de recherche - Johannes Kepler University
Postdoctorat - Université de Montréal
Superviseur⋅e principal⋅e :
Stagiaire de recherche
Stagiaire de recherche - Université de Montréal
Maîtrise recherche - McGill University
Stagiaire de recherche - Université de Montréal
Collaborateur·rice de recherche - Karlsruhe Institute of Technology
Collaborateur·rice de recherche
Stagiaire de recherche - Osnabrueck university
Maîtrise recherche - McGill University
Collaborateur·rice de recherche - McGill University
Collaborateur·rice de recherche - The University of Dresden, Helmholtz Centre for Environmental Research Leipzig
Collaborateur·rice de recherche - National Observatory of Athens
Collaborateur·rice de recherche
Collaborateur·rice de recherche - KU Leuven
Stagiaire de recherche - Cambridge University
Collaborateur·rice de recherche
Co-superviseur⋅e :
Postdoctorat - McGill University
Doctorat - Université de Montréal
Collaborateur·rice de recherche - RWTH Aachen University (Rheinisch-Westfälische Technische Hochschule Aachen)
Co-superviseur⋅e :
Maîtrise recherche - McGill University

Publications

Bugs in the Data: How ImageNet Misrepresents Biodiversity
Alexandra Luccioni
ImageNet-1k is a dataset often used for benchmarking machine learning (ML) models and evaluating tasks such as image recognition and object … (voir plus)detection. Wild animals make up 27% of ImageNet-1k but, unlike classes representing people and objects, these data have not been closely scrutinized. In the current paper, we analyze the 13,450 images from 269 classes that represent wild animals in the ImageNet-1k validation set, with the participation of expert ecologists. We find that many of the classes are ill-defined or overlapping, and that 12% of the images are incorrectly labeled, with some classes having >90% of images incorrect. We also find that both the wildlife-related labels and images included in ImageNet-1k present significant geographical and cultural biases, as well as ambiguities such as artificial animals, multiple species in the same image, or the presence of humans. Our findings highlight serious issues with the extensive use of this dataset for evaluating ML systems, the use of such algorithms in wildlife-related tasks, and more broadly the ways in which ML datasets are commonly created and curated.
Deep Networks as Paths on the Manifold of Neural Representations
Richard D Lange
Devin Kwok
Jordan Kyle Matelsky
Xinyue Wang
Konrad Paul Kording
General Purpose AI Systems in the AI Act: Trying to Fit a Square Peg Into a Round Hole
Claire Boine
Normalization Layers Are All That Sharpness-Aware Minimization Needs
Maximilian Mueller
Tiffany Joyce Vlaar
Matthias Hein
Sharpness-aware minimization (SAM) was proposed to reduce sharpness of minima and has been shown to enhance generalization performance in va… (voir plus)rious settings. In this work we show that perturbing only the affine normalization parameters (typically comprising 0.1% of the total parameters) in the adversarial step of SAM can outperform perturbing all of the parameters.This finding generalizes to different SAM variants and both ResNet (Batch Normalization) and Vision Transformer (Layer Normalization) architectures. We consider alternative sparse perturbation approaches and find that these do not achieve similar performance enhancement at such extreme sparsity levels, showing that this behaviour is unique to the normalization layers. Although our findings reaffirm the effectiveness of SAM in improving generalization performance, they cast doubt on whether this is solely caused by reduced sharpness.
Digitalization and the Anthropocene
Felix Creutzig
Daron Acemoglu
Xuemei Bai
Paul N. Edwards
Marie Josefine Hintz
Lynn H. Kaack
Siir Kilkis
Stefanie Kunkel
Amy Luers
Nikola Milojevic-Dupont
Dave Rejeski
Jürgen Renn
Christoph Rosol
Daniela Russ
Thomas Turnbull
Elena Verdolini
Felix Wagner
Charlie Wilson
Aicha Zekar … (voir 1 de plus)
Marius Zumwald
Great claims have been made about the benefits of dematerialization in a digital service economy. However, digitalization has historically i… (voir plus)ncreased environmental impacts at local and planetary scales, affecting labor markets, resource use, governance, and power relationships. Here we study the past, present, and future of digitalization through the lens of three interdependent elements of the Anthropocene: ( a) planetary boundaries and stability, ( b) equity within and between countries, and ( c) human agency and governance, mediated via ( i) increasing resource efficiency, ( ii) accelerating consumption and scale effects, ( iii) expanding political and economic control, and ( iv) deteriorating social cohesion. While direct environmental impacts matter, the indirect and systemic effects of digitalization are more profoundly reshaping the relationship between humans, technosphere and planet. We develop three scenarios: planetary instability, green but inhumane, and deliberate for the good. We conclude with identifying leverage points that shift human–digital–Earth interactions toward sustainability. Expected final online publication date for the Annual Review of Environment and Resources, Volume 47 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
A portrait of the different configurations between digitally-enabled innovations and climate governance
Pierre J. C. Chuard
Jennifer Garard
Karsten A. Schulz
Nilushi Kumarasinghe
Damon Matthews
Neural Networks as Paths through the Space of Representations
Richard D Lange
Devin Kwok
Jordan Kyle Matelsky
Xinyue Wang
Konrad Paul Kording
Clustering units in neural networks: upstream vs downstream information
Richard D Lange
Konrad Paul Kording
It has been hypothesized that some form of"modular"structure in artificial neural networks should be useful for learning, compositionality, … (voir plus)and generalization. However, defining and quantifying modularity remains an open problem. We cast the problem of detecting functional modules into the problem of detecting clusters of similar-functioning units. This begs the question of what makes two units functionally similar. For this, we consider two broad families of methods: those that define similarity based on how units respond to structured variations in inputs ("upstream"), and those based on how variations in hidden unit activations affect outputs ("downstream"). We conduct an empirical study quantifying modularity of hidden layer representations of simple feedforward, fully connected networks, across a range of hyperparameters. For each model, we quantify pairwise associations between hidden units in each layer using a variety of both upstream and downstream measures, then cluster them by maximizing their"modularity score"using established tools from network science. We find two surprising results: first, dropout dramatically increased modularity, while other forms of weight regularization had more modest effects. Second, although we observe that there is usually good agreement about clusters within both upstream methods and downstream methods, there is little agreement about the cluster assignments across these two families of methods. This has important implications for representation-learning, as it suggests that finding modular representations that reflect structure in inputs (e.g. disentanglement) may be a distinct goal from learning modular representations that reflect structure in outputs (e.g. compositionality).
On Neural Architecture Inductive Biases for Relational Tasks
Current deep learning approaches have shown good in-distribution generalization performance, but struggle with out-of-distribution generaliz… (voir plus)ation. This is especially true in the case of tasks involving abstract relations like recognizing rules in sequences, as we find in many intelligence tests. Recent work has explored how forcing relational representations to remain distinct from sensory representations, as it seems to be the case in the brain, can help artificial systems. Building on this work, we further explore and formalize the advantages afforded by 'partitioned' representations of relations and sensory details, and how this inductive bias can help recompose learned relational structure in newly encountered settings. We introduce a simple architecture based on similarity scores which we name Compositional Relational Network (CoRelNet). Using this model, we investigate a series of inductive biases that ensure abstract relations are learned and represented distinctly from sensory data, and explore their effects on out-of-distribution generalization for a series of relational psychophysics tasks. We find that simple architectural choices can outperform existing models in out-of-distribution generalization. Together, these results show that partitioning relational representations from other information streams may be a simple way to augment existing network architectures' robustness when performing out-of-distribution relational computations.
Aligning artificial intelligence with climate change mitigation
Lynn H. Kaack
Priya L. Donti
Emma Strubell
George Yoshito Kamiya
Felix Creutzig
Inductive Biases for Relational Tasks
Current deep learning approaches have shown good in-distribution performance but struggle in out-of-distribution settings. This is especiall… (voir plus)y true in the case of tasks involving abstract relations like recognizing rules in sequences, as required in many intelligence tests. In contrast, our brains are remarkably flexible at such tasks, an attribute that is likely linked to anatomical constraints on computations. Inspired by this, recent work has explored how enforcing that relational representations remain distinct from sensory representations can help artificial systems. Building on this work, we further explore and formalize the advantages afforded by ``partitioned'' representations of relations and sensory details. We investigate inductive biases that ensure abstract relations are learned and represented distinctly from sensory data across several neural network architectures and show that they outperform existing architectures on out-of-distribution generalization for various relational tasks. These results show that partitioning relational representations from other information streams may be a simple way to augment existing network architectures' robustness when performing relational computations.
Tackling Climate Change with Machine Learning
Priya L. Donti
Lynn H. Kaack
Kelly Kochanski
Alexandre Lacoste
Kris Sankaran
Andrew Slavin Ross
Nikola Milojevic-Dupont
Natasha Jaques
Anna Waldman-Brown
Alexandra Luccioni
Evan David Sherwin
S. Karthik Mukkavilli
Konrad Paul Kording
Carla P. Gomes
Andrew Y. Ng
Demis Hassabis
John C. Platt
Felix Creutzig … (voir 2 de plus)
Jennifer T Chayes
Climate change is one of the greatest challenges facing humanity, and we, as machine learning (ML) experts, may wonder how we can help. Here… (voir plus) we describe how ML can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by ML, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the ML community to join the global effort against climate change.