Home

Inspiring the development of artificial intelligence for the benefit of all 

A professor talks to his students in a café/lounge.

Located in the heart of Quebec’s AI ecosystem, Mila is a community of more than 1,200 researchers specializing in machine learning and dedicated to scientific excellence and innovation.

About

Featured
Featured
Featured

Faculty 

Founded in 1993 by Professor Yoshua Bengio, Mila today brings together over 140 professors affiliated with Université de Montréal, McGill University, Polytechnique Montréal and HEC Montréal. Mila also welcomes professors from Université Laval, Université de Sherbrooke, École de technologie supérieure (ÉTS) and Concordia University. 

Browse the online directory

Photo of Yoshua Bengio

Latest Publications

Generative AI: Hype, Hope, and Responsible Use in Science and Everyday Life
Assessing Critical Thinking Skills in Data Literacy: A Digital Performance Assessment
Ying Cui
Xiaoxiao Liu
Fu Chen
Alina Lutsyk
Jaqueline P. Leighton
Open Problems in Technical AI Governance
Anka Reuel
Benjamin Bucknall
Stephen Casper
Timothy Fist
Lisa Soder
Onni Aarne
Lewis Hammond
Lujain Ibrahim
Alan Chan
Peter Wills
Markus Anderljung
Ben Garfinkel
Lennart Heim
Andrew Trask
Gabriel Mukobi
Rylan Schaeffer
Mauricio Baker
Sara Hooker
Irene Solaiman
Sasha Luccioni … (see 14 more)
Alexandra Luccioni
Nitarshan Rajkumar
Nicolas Moës
Jeffrey Ladish
David Bau
Paul Bricman
Neel Guha
Jessica Newman
Tobin South
Alex Pentland
Sanmi Koyejo
Mykel Kochenderfer
Robert Trager
AI progress is creating a growing range of risks and opportunities, but it is often unclear how they should be navigated. In many cases, the… (see more) barriers and uncertainties faced are at least partly technical. Technical AI governance, referring to technical analysis and tools for supporting the effective governance of AI, seeks to address such challenges. It can help to (a) identify areas where intervention is needed, (b) identify and assess the efficacy of potential governance actions, and (c) enhance governance options by designing mechanisms for enforcement, incentivization, or compliance. In this paper, we explain what technical AI governance is, why it is important, and present a taxonomy and incomplete catalog of its open problems. This paper is intended as a resource for technical researchers or research funders looking to contribute to AI governance.
A Layer Selection Approach to Test Time Adaptation
Sabyasachi Sahoo
Mostafa ElAraby
Jonas Ngnawe
Yann Batiste Pequignot
Frederic Precioso
Test Time Adaptation (TTA) addresses the problem of distribution shift by adapting a pretrained model to a new domain during inference. When… (see more) faced with challenging shifts, most methods collapse and perform worse than the original pretrained model. In this paper, we find that not all layers are equally receptive to the adaptation, and the layers with the most misaligned gradients often cause performance degradation. To address this, we propose GALA, a novel layer selection criterion to identify the most beneficial updates to perform during test time adaptation. This criterion can also filter out unreliable samples with noisy gradients. Its simplicity allows seamless integration with existing TTA loss functions, thereby preventing degradation and focusing adaptation on the most trainable layers. This approach also helps to regularize adaptation to preserve the pretrained features, which are crucial for handling unseen domains. Through extensive experiments, we demonstrate that the proposed layer selection framework improves the performance of existing TTA approaches across multiple datasets, domain shifts, model architectures, and TTA losses.

AI for Humanity

Socially responsible and beneficial development of AI is a fundamental component of Mila’s mission. As a leader in the field, we wish to contribute to social dialogue and the development of applications that will benefit society.

Learn more

A person looks up at a starry sky.