Delivered in partnership with Indspire, this tailored career pathway is designed to empower Indigenous talent to learn, develop, and lead the evolution of AI. Applications for the 2025 program are open until January 31st.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Amplifying Pathological Detection in EEG Signaling Pathways through Cross-Dataset Transfer Learning
A large number of tutorials for popular software development technologies are available online, and those about the same technology vary wid… (see more)ely in their presentation. We studied the design of tutorials in the software documentation landscape for five popular programming languages: Java, C#, Python, Javascript, and Typescript. We investigated the extent to which tutorial pages, i.e. resources, differ and report statistics of variations in resource properties. We developed a framework for characterizing resources based on their distinguishing attributes, i.e. properties that vary widely for the resource, relative to other resources. Additionally, we propose that a resource can be represented by its resource style, i.e. the combination of its distinguishing attributes. We discuss three techniques for characterizing resources based on our framework, to capture notable and relevant content and presentation properties of tutorial pages. We apply these techniques on a data set of 2551 resources to validate that our framework identifies valid and interpretable styles. We contribute this framework for reasoning about the design of resources in the online software documentation landscape.
2024-02-01
IEEE Transactions on Software Engineering (published)