We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Training a deep neural network requires the model to go over training data for several epochs and update network parameters. In continual le… (see more)arning, this process results in catastrophic forgetting which is one of the core issues of this domain. Most proposed approaches for this issue try to compensate for the effects of parameter updates in the batch incremental setup in which the training model visits a lot of samples for several epochs. However, it is not realistic to expect training data will always be fed to model in a batch incremental setup. This paper proposes a chaotic stream learner that mimics the chaotic behavior of biological neurons and does not updates network parameters. In addition, it can work with fewer samples compared to deep learning models on stream learning setup. Our experiments on MNIST, CIFAR10, and Omniglot show that the chaotic stream learner has less catastrophic forgetting by its nature in comparison to a CNN model in continual learning.
The study of generalization of neural networks in gradient-based meta-learning has recently great research interest. Previous work on the st… (see more)udy of the objective landscapes within the scope of few-shot classification empirically demonstrated that generalization to new tasks might be linked to the average inner product between their respective gradients vectors (Guiroy et al., 2019). Following that work, we study the effect that meta-training has on the learned space of representation of the network. Notably, we demonstrate that the global similarity in the space of representation, measured by the average inner product between the embeddings of meta-test examples, also correlates to generalization. Based on these observations, we propose a novel model-selection criterion for gradient-based meta-learning and experimentally validate its effectiveness.
While deep reinforcement learning excels at solving tasks where large amounts of data can be collected through virtually unlimited interacti… (see more)on with the environment, learning from limited interaction remains a key challenge. We posit that an agent can learn more efficiently if we augment reward maximization with self-supervised objectives based on structure in its visual input and sequential interaction with the environment. Our method, Momentum Predictive Representations (MPR), trains an agent to predict its own latent state representations multiple steps into the future. We compute target representations for future states using an encoder which is an exponential moving average of the agent's parameters, and we make predictions using a learned transition model. On its own, this future prediction objective outperforms prior methods for sample-efficient deep RL from pixels. We further improve performance by adding data augmentation to the future prediction loss, which forces the agent's representations to be consistent across multiple views of an observation. Our full self-supervised objective, which combines future prediction and data augmentation, achieves a median human-normalized score of 0.444 on Atari in a setting limited to 100K steps of environment interaction, which is a 66% relative improvement over the previous state-of-the-art. Moreover, even in this limited data regime, MPR exceeds expert human scores on 6 out of 26 games.
Background Reward processing has been proposed to underpin atypical social behavior, a core feature of autism spectrum disorder (ASD). Howev… (see more)er, previous neuroimaging studies have yielded inconsistent results regarding the specificity of atypicalities for social rewards in ASD. Utilizing a large sample, we aimed to assess altered reward processing in response to reward type (social, monetary) and reward phase (anticipation, delivery) in ASD. Methods Functional magnetic resonance imaging during social and monetary reward anticipation and delivery was performed in 212 individuals with ASD (7.6-30.5 years) and 181 typically developing (TD) participants (7.6-30.8 years). Results Across social and monetary reward anticipation, whole-brain analyses (p0.05, family-wise error-corrected) showed hypoactivation of the right ventral striatum (VS) in ASD. Further, region of interest (ROI) analy
Genome-Wide Association Studies are typically conducted using linear models to find genetic variants associated with common diseases. In the… (see more)se studies, association testing is done on a variant-by-variant basis, possibly missing out on non-linear interaction effects between variants. Deep networks can be used to model these interactions, but they are difficult to train and interpret on large genetic datasets. We propose a method that uses the gradient based deep interpretability technique named DeepLIFT to show that known diabetes genetic risk factors can be identified using deep models along with possibly novel associations.
We present a multi-relational temporal Knowledge Graph based on the daily interactions between artifacts in GitHub, one of the largest socia… (see more)l coding platforms. Such representation enables posing many user-activity and project management questions as link prediction and time queries over the knowledge graph. In particular, we introduce two new datasets for i) interpolated time-conditioned link prediction and ii) extrapolated time-conditioned link/time prediction queries, each with distinguished properties. Our experiments on these datasets highlight the potential of adapting knowledge graphs to answer broad software engineering questions. Meanwhile, it also reveals the unsatisfactory performance of existing temporal models on extrapolated queries and time prediction queries in general. To overcome these shortcomings, we introduce an extension to current temporal models using relative temporal information with regards to past events.
We consider cross-layer design of delay optimal transmission strategies for energy harvesting transmitters where the data and energy arrival… (see more) processes are stochastic. Using Markov decision theory, we show that the value function is weakly increasing in the queue state and weakly decreasing in the battery state. It is natural to expect that the delay optimal policy should be weakly increasing in the queue and battery states. We show via counterexamples that this is not the case. In fact, we show that for some sample scenarios the delay optimal policy may perform 5–13% better than the best monotone policy.
It is commonly believed that knowledge of syntactic structure should improve language modeling. However, effectively and computationally eff… (see more)iciently incorporating syntactic structure into neural language models has been a challenging topic. In this paper, we make use of a multi-task objective, i.e., the models simultaneously predict words as well as ground truth parse trees in a form called “syntactic distances”, where information between these two separate objectives shares the same intermediate representation. Experimental results on the Penn Treebank and Chinese Treebank datasets show that when ground truth parse trees are provided as additional training signals, the model is able to achieve lower perplexity and induce trees with better quality.
2020-07-01
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (published)