We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Fast-Converging Simulated Annealing for Ising Models Based on Integral Stochastic Computing
Probabilistic bits (p-bits) have recently been presented as a spin (basic computing element) for the simulated annealing (SA) of Ising model… (see more)s. In this brief, we introduce fast-converging SA based on p-bits designed using integral stochastic computing. The stochastic implementation approximates a p-bit function, which can search for a solution to a combinatorial optimization problem at lower energy than conventional p-bits. Searching around the global minimum energy can increase the probability of finding a solution. The proposed stochastic computing-based SA method is compared with conventional SA and quantum annealing (QA) with a D-Wave Two quantum annealer on the traveling salesman, maximum cut (MAX-CUT), and graph isomorphism (GI) problems. The proposed method achieves a convergence speed a few orders of magnitude faster while dealing with an order of magnitude larger number of spins than the other methods.
2022-03-28
IEEE Transactions on Neural Networks and Learning Systems (published)
Probabilistic bits (p-bits) have recently been presented as a spin (basic computing element) for the simulated annealing (SA) of Ising model… (see more)s. In this brief, we introduce fast-converging SA based on p-bits designed using integral stochastic computing. The stochastic implementation approximates a p-bit function, which can search for a solution to a combinatorial optimization problem at lower energy than conventional p-bits. Searching around the global minimum energy can increase the probability of finding a solution. The proposed stochastic computing-based SA method is compared with conventional SA and quantum annealing (QA) with a D-Wave Two quantum annealer on the traveling salesman, maximum cut (MAX-CUT), and graph isomorphism (GI) problems. The proposed method achieves a convergence speed a few orders of magnitude faster while dealing with an order of magnitude larger number of spins than the other methods.
2022-03-28
IEEE Transactions on Neural Networks and Learning Systems (published)
Diffusion-based generative models learn to iteratively transfer unstructured noise to a complex target distribution as opposed to Generative… (see more) Adversarial Networks (GANs) or the decoder of Variational Autoencoders (VAEs) which produce samples from the target distribution in a single step. Thus, in diffusion models every sample is naturally connected to a random trajectory which is a solution to a learned stochastic differential equation (SDE). Generative models are only concerned with the final state of this trajectory that delivers samples from the desired distribution. Abstreiter et. al showed that these stochastic trajectories can be seen as continuous filters that wash out information along the way. Consequently, it is reasonable to ask if there is an intermediate time step at which the preserved information is optimal for a given downstream task. In this work, we show that a combination of information content from different time steps gives a strictly better representation for the downstream task. We introduce an attention and recurrence based modules that ``learn to mix'' information content of various time-steps such that the resultant representation leads to superior performance in downstream tasks.
We propose a new method for training a supervised source separation system that aims to learn the interdependent relationships between all c… (see more)ombinations of sources in a mixture. Rather than independently estimating each source from a mix, we reframe the source separation problem as an Orderless Neural Autoregressive Density Estimator (NADE), and estimate each source from both the mix and a random subset of the other sources. We adapt a standard source separation architecture, Demucs, with additional inputs for each individual source, in addition to the input mixture. We randomly mask these input sources during training so that the network learns the conditional dependencies between the sources. By pairing this training method with a blocked Gibbs sampling procedure at inference time, we demonstrate that the network can iteratively improve its separation performance by conditioning a source estimate on its earlier source estimates. Experiments on two source separation datasets show that training a Demucs model with an Orderless NADE approach and using Gibbs sampling (up to 512 steps) at inference time strongly outperforms a Demucs baseline that uses a standard regression loss and direct (one step) estimation of sources.
Taxonomies have been widely used in various domains to underpin numerous applications. Specially, product taxonomies serve an essential role… (see more) in the e-commerce domain for the recommendation, browsing, and query understanding. However, taxonomies need to constantly capture the newly emerged terms or concepts in e-commerce platforms to keep up-to-date, which is expensive and labor-intensive if it relies on manual maintenance and updates. Therefore, we target the taxonomy expansion task to attach new concepts to existing taxonomies automatically. In this paper, we present a self-supervised and user behavior-oriented product taxonomy expansion framework to append new concepts into existing taxonomies. Our framework extracts hyponymy relations that conform to users' intentions and cognition. Specifically, i) to fully exploit user behavioral information, we extract candidate hyponymy relations that match user interests from query-click concepts; ii) to enhance the semantic information of new concepts and better detect hyponymy relations, we model concepts and relations through both user-generated content and structural information in existing taxonomies and user click logs, by leveraging Pre-trained Language Models and Graph Neural Network combined with Contrastive Learning; iii) to reduce the cost of dataset construction and overcome data skews, we construct a high-quality and balanced training dataset from existing taxonomy with no supervision. Extensive experiments on real-world product taxonomies in Meituan Platform, a leading Chinese vertical e-commerce platform to order take-out with more than 70 million daily active users, demonstrate the superiority of our proposed framework over state-of-the-art methods. Notably, our method enlarges the size of real-world product taxonomies from 39,263 to 94,698 relations with 88% precision. Our implementation is available: https://github.com/AdaCheng/Product_Taxonomy_Expansion.
In Multiple Sclerosis (MS), there is a large discrepancy between the clinical observations and how the pathology is exhibited on brain image… (see more)s, this is known as the clinical-radiological paradox. One of the hypotheses is that the clinical deficit may be more related to the spinal cord damage than the number or location of lesions in the brain. Therefore, investigating how the spinal cord is damaged becomes an acute challenge to better understand and overcome this paradox. Diffusion MRI is known to provide quantitative figures of neuronal degeneration and axonal loss, in the brain as well as in the spinal cord. In this paper, we propose to investigate how diffusion MRI metrics vary in the different cervical regions with the progression of the disease. We first study the reproducibility of diffusion MRI on healthy volunteers with a test-retest procedure using both standard diffusion tensor imaging (DTI) and multi-compartment Ball-and-Stick models. Then, based on the test re-test quantitative calibration, we provide quantitative figures of pathology evolution between M0 and M12 in the cervical spine on a set of 31 MS patients, exhibiting how the pathology damage spans in the cervical spinal cord.
2022-03-28
2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI) (published)
Forgetting is a normal process in healthy brains, and evidence suggests that the mammalian brain forgets more than is required based on limi… (see more)tations of mnemonic capacity. Episodic memories, in particular, are liable to be forgotten over time. Researchers have hypothesized that it may be beneficial for decision making to forget episodic memories over time. Reinforcement learning offers a normative framework in which to test such hypotheses. Here, we show that a reinforcement learning agent that uses an episodic memory cache to find rewards in maze environments can forget a large percentage of older memories without any performance impairments, if they utilize mnemonic representations that contain structural information about space. Moreover, we show that some forgetting can actually provide a benefit in performance compared to agents with unbounded memories. Our analyses of the agents show that forgetting reduces the influence of outdated information and states which are not frequently visited on the policies produced by the episodic control system. These results support the hypothesis that some degree of forgetting can be beneficial for decision making, which can help to explain why the brain forgets more than is required by capacity limitations.
2022-03-25
Frontiers in Computational Neuroscience (published)
Current deep learning approaches have shown good in-distribution performance but struggle in out-of-distribution settings. This is especiall… (see more)y true in the case of tasks involving abstract relations like recognizing rules in sequences, as required in many intelligence tests. In contrast, our brains are remarkably flexible at such tasks, an attribute that is likely linked to anatomical constraints on computations. Inspired by this, recent work has explored how enforcing that relational representations remain distinct from sensory representations can help artificial systems. Building on this work, we further explore and formalize the advantages afforded by ``partitioned'' representations of relations and sensory details. We investigate inductive biases that ensure abstract relations are learned and represented distinctly from sensory data across several neural network architectures and show that they outperform existing architectures on out-of-distribution generalization for various relational tasks. These results show that partitioning relational representations from other information streams may be a simple way to augment existing network architectures' robustness when performing relational computations.
We propose INFERNO, a method to infer object-centric representations of visual scenes without annotations.
Our method decomposes a scene int… (see more)o multiple objects, with each object having a structured representation that disentangles its shape, appearance and pose.
Each object representation defines a localized neural radiance field used to generate 2D views of the scene through differentiable rendering.
Our model is subsequently trained by minimizing a reconstruction loss between inputs and corresponding rendered scenes.
We empirically show that INFERNO discovers objects in a scene without supervision.
We also validate the interpretability of the learned representations by manipulating inferred scenes and showing the corresponding effect in the rendered output.
Finally, we demonstrate the usefulness of our 3D object representations in a visual reasoning task using the CATER dataset.
Like humans devoid of imagination, current machine learning systems lack the ability to adapt to new, unexpected situations by foreseeing th… (see more)em, which makes them unable to solve new tasks by analogical reasoning. In this work, we introduce a new compositional imagination framework that improves a model's ability to generalize. One of the key components of our framework is object-centric inductive biases that enables models to perceive the environment as a series of objects, properties, and transformations. By composing these key ingredients, it is possible to generate new unseen tasks that, when used to train the model, improve generalization. Experiments on a simplified version of the Abstraction and Reasoning Corpus (ARC) demonstrate the effectiveness of our framework.
We present a technique for zero-shot generation of a 3D model using only a target text prompt. Without any 3D supervision our method deforms… (see more) the control shape of a limit subdivided surface along with its texture map and normal map to obtain a 3D asset that corresponds to the input text prompt and can be easily deployed into games or modeling applications. We rely only on a pre-trained CLIP model that compares the input text prompt with differentiably rendered images of our 3D model. While previous works have focused on stylization or required training of generative models we perform optimization on mesh parameters directly to generate shape, texture or both. To constrain the optimization to produce plausible meshes and textures we introduce a number of techniques using image augmentations and the use of a pretrained prior that generates CLIP image embeddings given a text embedding.