We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Model-Driven Software Engineering encompasses various modelling formalisms for supporting software development. One such formalism is domain… (see more) modelling which bridges the gap between requirements expressed in natural language and analyzable and more concise domain models expressed in class diagrams. Due to the lack of modelling skills among novice modellers and time constraints in industrial projects, it is often not possible to build an accurate domain model manually. To address this challenge, we aim to develop an approach to extract domain models from problem descriptions written in natural language by combining rules based on natural language processing with machine learning. As a first step, we report on an automated and tool-supported approach with an accuracy of extracted domain models higher than existing approaches. In addition, the approach generates trace links for each model element of a domain model. The trace links enable novice modellers to execute queries on the extracted domain models to gain insights into the modelling decisions taken for improving their modelling skills. Furthermore, to evaluate our approach, we propose a novel comparison metric and discuss our experimental design. Finally, we present a research agenda detailing research directions and discuss corresponding challenges.
2020-01-01
2020 IEEE 28th International Requirements Engineering Conference (RE) (published)
84 Background: Marked sex differences in autism prevalence accentuate the need to understand 85 the role of biological sex-related factors i… (see more)n autism. Efforts to unravel sex differences in the 86 brain organization of autism have, however, been challenged by the limited availability of 87 female data. Methods: We addressed this gap by using a large sample of males and females 88 with autism and neurotypical (NT) control individuals (ABIDE; Autism: 362 males, 82 89 females; NT: 409 males, 166 females; 7-18 years). Discovery analyses examined main effects 90 of diagnosis, sex and their interaction across five resting-state fMRI (R-fMRI) metrics 91 (voxel-level Z > 3.1, cluster-level P 0.01, gaussian random field corrected). Secondary 92 analyses assessed the robustness of the results to different pre-processing approaches and 93 their replicability in two independent samples: the EU-AIMS Longitudinal European Autism 94 Project (LEAP) and the Gender Explorations of Neurogenetics and Development to Advance 95 Autism Research (GENDAAR). Results: Discovery analyses in ABIDE revealed significant 96 main effects across the intrinsic functional connectivity (iFC) of the posterior cingulate 97 cortex, regional homogeneity and voxel-mirrored homotopic connectivity (VMHC) in several 98 cortical regions, largely converging in the default network midline. Sex-by-diagnosis 99 interactions were confined to the dorsolateral occipital cortex, with reduced VMHC in 100 females with autism. All findings were robust to different pre-processing steps. Replicability 101 in independent samples varied by R-fMRI measures and effects with the targeted sex-by102 diagnosis interaction being replicated in the larger of the two replication samples – EU-AIMS 103 LEAP. Limitations: Given the lack of a priori harmonization among the discovery and 104 replication datasets available to date, sample-related variation remained and may have 105 affected replicability. Conclusions: Atypical cross-hemispheric interactions are 106 neurobiologically relevant to autism. They likely result from the combination of sex107
Training recurrent neural networks (RNNs) on long sequences using backpropagation through time (BPTT) remains a fundamental challenge. It ha… (see more)s been shown that adding a local unsupervised loss term into the optimization objective makes the training of RNNs on long sequences more effective. While the importance of an unsupervised task can in principle be controlled by a coefficient in the objective function, the gradients with respect to the unsupervised loss term still influence all the hidden state dimensions, which might cause important information about the supervised task to be degraded or erased. Compared to existing semi-supervised sequence learning methods, this thesis focuses upon a traditionally overlooked mechanism – an architecture with explicitly designed private and shared hidden units designed to mitigate the detrimental influence of the auxiliary unsupervised loss over the main supervised task. We achieve this by dividing the RNN hidden space into a private space for the supervised task or a shared space for both the supervised and unsupervised tasks. We present extensive experiments with the proposed framework on several long sequence modeling benchmark datasets. Results indicate that the proposed framework can yield performance gains in RNN models where long term dependencies are notoriously challenging to deal with.
While updating the critic network, we multiply the normal random noise vector with policy noise of 0.2 and then clip it in the range -0.2 to… (see more) 0.2. This clipped policy noise is added to the action at the next time step a′ computed by the target actor networks f and π. The actor networks (f and π networks), target critic and target actor networks are updated once every two updates to the critic network.
The variational autoencoder (VAE) can learn the manifold of natural images on certain datasets, as evidenced by meaningful interpolating or … (see more)extrapolating in the continuous latent space. However, on discrete data such as text, it is unclear if unsupervised learning can discover similar latent space that allows controllable manipulation. In this work, we find that sequence VAEs trained on text fail to properly decode when the latent codes are manipulated, because the modified codes often land in holes or vacant regions in the aggregated posterior latent space, where the decoding network fails to generalize. Both as a validation of the explanation and as a fix to the problem, we propose to constrain the posterior mean to a learned probability simplex, and performs manipulation within this simplex. Our proposed method mitigates the latent vacancy problem and achieves the first success in unsupervised learning of controllable representations for text. Empirically, our method outperforms unsupervised baselines and strong supervised approaches on text style transfer, and is capable of performing more flexible fine-grained control over text generation than existing methods.
The ubiquitous nature of dialogue systems and their interaction with users generate an enormous amount of data. Can we improve chatbots usin… (see more)g this data? A self-feeding chatbot improves itself by asking natural language feedback when a user is dissatisfied with its response and uses this feedback as an additional training sample. However, user feedback in most cases contains extraneous sequences hindering their usefulness as a training sample. In this work, we propose a generative adversarial model that converts noisy feedback into a plausible natural response in a conversation. The generator’s goal is to convert the feedback into a response that answers the user’s previous utterance and to fool the discriminator which distinguishes feedback from natural responses. We show that augmenting original training data with these modified feedback responses improves the original chatbot performance from 69.94%to 75.96% in ranking correct responses on the PERSONACHATdataset, a large improvement given that the original model is already trained on 131k samples.
2020-01-01
Conference on Empirical Methods in Natural Language Processing (published)
There is an analogy between machine learning systems and economic entities in that they are both adaptive, and their behaviour is specified … (see more)in a more-or-less explicit way. It appears that the area of AI that is most analogous to the behaviour of economic entities is that of morally good decision-making, but it is an open question as to how precisely moral behaviour can be achieved in an AI system. This paper explores the analogy between these two complex systems, and we suggest that a clearer understanding of this apparent analogy may help us forward in both the socio-economic domain and the AI domain: known results in economics may help inform feasible solutions in AI safety, but also known results in AI may inform economic policy. If this claim is correct, then the recent successes of deep learning for AI suggest that more implicit specifications work better than explicit ones for solving such problems.
16p11.2 and 22q11.2 Copy Number Variants (CNVs) confer high risk for Autism Spectrum Disorder (ASD), schizophrenia (SZ), and Attention-Defic… (see more)it-Hyperactivity-Disorder (ADHD), but their impact on functional connectivity (FC) remains unclear. We analyzed resting-state functional magnetic resonance imaging data from 101 CNV carriers, 755 individuals with idiopathic ASD, SZ, or ADHD and 1,072 controls. We used CNV FC-signatures to identify dimensions contributing to complex idiopathic conditions. CNVs had large mirror effects on FC at the global and regional level. Thalamus, somatomotor, and posterior insula regions played a critical role in dysconnectivity shared across deletions, duplications, idiopathic ASD, SZ but not ADHD. Individuals with higher similarity to deletion FC-signatures exhibited worse cognitive and behavioral symptoms. Deletion similarities identified at the connectivity level could be related to the redundant associations observed genome-wide between gene expression spatial patterns and FC-signatures. Results may explain why many CNVs affect a similar range of neuropsychiatric symptoms.