Delivered in partnership with Indspire, this tailored career pathway is designed to empower Indigenous talent to learn, develop, and lead the evolution of AI. Applications for the 2025 program are open until January 31st.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Motivating Users to Attend to Privacy: A Theory-Driven Design Study
In modern technology environments, raising users’ privacy awareness is crucial. Existing efforts largely focused on privacy policy present… (see more)ation and failed to systematically address a radical challenge of user motivation for initiating privacy awareness. Leveraging the Protection Motivation Theory (PMT), we proposed design ideas and categories dedicated to motivating users to engage with privacy-related information. Using these design ideas, we created a conceptual prototype, enhancing the current App Store product page. Results from an online experiment and follow-up interviews showed that our design effectively motivated participants to attend to privacy issues, raising both the threat appraisal and coping appraisal, two main factors in PMT. Our work indicated that effective design should consider combining PMT components, calibrating information content, and integrating other design elements, such as visual cues and user familiarity. Overall, our study contributes valuable design considerations driven by the PMT to amplify the motivational aspect of privacy communication.
2024-07-01
Designing Interactive Systems Conference (published)
Normalization layers have recently experienced a renaissance in the deep reinforcement learning and continual learning literature, with seve… (see more)ral works highlighting diverse benefits such as improving loss landscape conditioning and combatting overestimation bias. However, normalization brings with it a subtle but important side effect: an equivalence between growth in the norm of the network parameters and decay in the effective learning rate. This becomes problematic in continual learning settings, where the resulting effective learning rate schedule may decay to near zero too quickly relative to the timescale of the learning problem. We propose to make the learning rate schedule explicit with a simple re-parameterization which we call Normalize-and-Project (NaP), which couples the insertion of normalization layers with weight projection, ensuring that the effective learning rate remains constant throughout training. This technique reveals itself as a powerful analytical tool to better understand learning rate schedules in deep reinforcement learning, and as a means of improving robustness to nonstationarity in synthetic plasticity loss benchmarks along with both the single-task and sequential variants of the Arcade Learning Environment. We also show that our approach can be easily applied to popular architectures such as ResNets and transformers while recovering and in some cases even slightly improving the performance of the base model in common stationary benchmarks.
SpeechBrain is an open-source Conversational AI toolkit based on PyTorch, focused particularly on speech processing tasks such as speech rec… (see more)ognition, speech enhancement, speaker recognition, text-to-speech, and much more. It promotes transparency and replicability by releasing both the pre-trained models and the complete"recipes"of code and algorithms required for training them. This paper presents SpeechBrain 1.0, a significant milestone in the evolution of the toolkit, which now has over 200 recipes for speech, audio, and language processing tasks, and more than 100 models available on Hugging Face. SpeechBrain 1.0 introduces new technologies to support diverse learning modalities, Large Language Model (LLM) integration, and advanced decoding strategies, along with novel models, tasks, and modalities. It also includes a new benchmark repository, offering researchers a unified platform for evaluating models across diverse tasks
Traditional reinforcement learning (RL) generates discrete control policies, assigning one action per cycle. These policies are usually impl… (see more)emented as in a fixed-frequency control loop. This rigidity presents challenges as optimal control frequency is task-dependent; suboptimal frequencies increase computational demands and reduce exploration efficiency. Variable Time Step Reinforcement Learning (VTS-RL) addresses these issues with adaptive control frequencies, executing actions only when necessary, thus reducing computational load and extending the action space to include action durations. In this paper we introduce the Multi-Objective Soft Elastic Actor-Critic (MOSEAC) method to perform VTS-RL, validating it through theoretical analysis and experimentation in simulation and on real robots. Results show faster convergence, better training results, and reduced energy consumption with respect to other variable- or fixed-frequency approaches.
Adversarial Training (AT) is a well-known framework designed to mitigate adversarial vulnerabilities in neural networks. Recent research ind… (see more)icates that incorporating adversarial examples (AEs) in training can enhance models' generalization capabilities. To understand the impact of AEs on learning dynamics, we study AT through the lens of sample difficulty methodologies. Our findings show that AT leads to more stable learning dynamics compared to Natural Training (NT), resulting in gradual performance improvements and less overconfident predictions. This suggests that AT steers training away from learning easy, perturbable spurious features toward more resilient and generalizable ones. However, a trade-off exists between adversarial robustness and generalization gains, due to robust overfitting, limiting practical deployment. To address this, we propose using synthesized data to bridge this gap. Our results demonstrate that AT benefits significantly from synthesized data, whereas NT does not, enhancing generalization without compromising robustness and offering new avenues for developing robust and generalizable models.
Economic evaluation of the effect of needle and syringe programs on skin, soft tissue, and vascular infections in people who inject drugs: a microsimulation modelling approach
Language model capabilities predictably improve from scaling a model's size and training data. Motivated by this, increasingly large languag… (see more)e models have been trained, yielding an array of impressive capabilities. Yet these models are vulnerable to adversarial prompts, such as"jailbreaks"that hijack models to perform undesired behaviors, posing a significant risk of misuse. Prior work indicates that computer vision models become more robust with model and data scaling, raising the question: does language model robustness also improve with scale? We study this question empirically, finding that larger models respond substantially better to adversarial training, but there is little to no benefit from model scale in the absence of explicit defenses.