On the Performance Implications of Deploying IoT Apps as FaaS
Mohab Aly
Soumaya Yacout
Timeliness of reporting of SARS-CoV-2 seroprevalence results and their utility for infectious disease surveillance
Claire Donnici
Natasha Ilincic
Christian Cao
Caseng Zhang
Gabriel Deveaux
David A. Clifton
Niklas Bobrovitz
Rahul K. Arora
Gradients without Backpropagation
Atilim Güneş Baydin
Barak A. Pearlmutter
Don Syme
Frank Wood
Philip Torr
Novel informatics approaches to COVID-19 Research: From methods to applications
Hua Xu
Yi Wang
P. Tarczy-Hornoch
Advanced Diffusion MR Imaging for Multiple Sclerosis in the Brain and Spinal Cord
Masaaki Hori
Tomoko Maekawa
Kouhei Kamiya
Akifumi Hagiwara
Masami Goto
Mariko Y. Takemura
Shohei Fujita
Christina Andica
Koji Kamagata
Shigeki Aoki
Diffusion tensor imaging (DTI) has been established its usefulness in evaluating normal-appearing white matter (NAWM) and other lesions that… (see more) are difficult to evaluate with routine clinical MRI in the evaluation of the brain and spinal cord lesions in multiple sclerosis (MS), a demyelinating disease. With the recent advances in the software and hardware of MRI systems, increasingly complex and sophisticated MRI and analysis methods, such as q-space imaging, diffusional kurtosis imaging, neurite orientation dispersion and density imaging, white matter tract integrity, and multiple diffusion encoding, referred to as advanced diffusion MRI, have been proposed. These are capable of capturing in vivo microstructural changes in the brain and spinal cord in normal and pathological states in greater detail than DTI. This paper reviews the current status of recent advanced diffusion MRI for assessing MS in vivo as part of an issue celebrating two decades of magnetic resonance in medical sciences (MRMS), an official journal of the Japanese Society of Magnetic Resonance in Medicine.
Advanced Diffusion MR Imaging for Multiple Sclerosis in the Brain and Spinal Cord
Masaaki Hori
Tomoko Maekawa
Kouhei Kamiya
Akifumi Hagiwara
Masami Goto
Mariko Yoshida Takemura
Shohei Fujita
Christina Andica
Koji Kamagata
Shigeki Aoki
Diffusion tensor imaging (DTI) has been established its usefulness in evaluating normal-appearing white matter (NAWM) and other lesions that… (see more) are difficult to evaluate with routine clinical MRI in the evaluation of the brain and spinal cord lesions in multiple sclerosis (MS), a demyelinating disease. With the recent advances in the software and hardware of MRI systems, increasingly complex and sophisticated MRI and analysis methods, such as q-space imaging, diffusional kurtosis imaging, neurite orientation dispersion and density imaging, white matter tract integrity, and multiple diffusion encoding, referred to as advanced diffusion MRI, have been proposed. These are capable of capturing in vivo microstructural changes in the brain and spinal cord in normal and pathological states in greater detail than DTI. This paper reviews the current status of recent advanced diffusion MRI for assessing MS in vivo as part of an issue celebrating two decades of magnetic resonance in medical sciences (MRMS), an official journal of the Japanese Society of Magnetic Resonance in Medicine.
CACHE (Critical Assessment of Computational Hit-finding Experiments): A public–private partnership benchmarking initiative to enable the development of computational methods for hit-finding
Suzanne Ackloo
R. Al-Awar
Rommie Elizabeth Amaro
C. Arrowsmith
Hatylas F. Z. Azevedo
R. Batey
U. Betz
Cristian G. Bologa
J. Chodera
Wendy Cornell
Ian Dunham
G. Ecker
Kristina Edfeldt
A. Edwards
M. Gilson
Cláudia Regina Gordijo
G. Hessler
Alexander Hillisch
Anders C Hogner … (see 19 more)
John Joseph Irwin
J. Jansen
Daniel Kuhn
Andrew R. Leach
Alpha A. Lee
Uta F. Lessel
J. Moult
Ingo Muegge
Tudor I. Oprea
Ben Perry
Patrick F. Riley
K. Saikatendu
Vijayaratnam Santhakumar
Matthieu Schapira
Cora Scholten
M. Todd
Masoud Vedadi
Andrea Volkamer
T. Willson
Halting Time is Predictable for Large Models: A Universality Property and Average-Case Analysis
Bart van Merriënboer
Fabian Pedregosa
Geographic concentration of SARS-CoV-2 cases by social determinants of health in metropolitan areas in Canada: a cross-sectional study
Yiqing Xia
Huiting Ma
Gary Moloney
Héctor A. Velásquez García
Monica Sirski
Naveed Janjua
David Vickers
Tyler Williamson
Alan Katz
Kristy Yu
K. Yiu
Rafal Kustra
Marc Brisson
Stefan Baral
Sharmistha Mishra
Mathieu Maheu-Giroux
Robust Policy Learning over Multiple Uncertainty Sets
Annie Xie
Shagun Sodhani
Chelsea Finn
Amy Zhang
Reinforcement learning (RL) agents need to be robust to variations in safety-critical environments. While system identification methods prov… (see more)ide a way to infer the variation from online experience, they can fail in settings where fast identification is not possible. Another dominant approach is robust RL which produces a policy that can handle worst-case scenarios, but these methods are generally designed to achieve robustness to a single uncertainty set that must be specified at train time. Towards a more general solution, we formulate the multi-set robustness problem to learn a policy robust to different perturbation sets. We then design an algorithm that enjoys the benefits of both system identification and robust RL: it reduces uncertainty where possible given a few interactions, but can still act robustly with respect to the remaining uncertainty. On a diverse set of control tasks, our approach demonstrates improved worst-case performance on new environments compared to prior methods based on system identification and on robust RL alone.
Erratum to: Rapid simultaneous acquisition of macromolecular tissue volume, susceptibility, and relaxometry maps (Magn Reson Med. 2022;87:781‐790.)
Fang Frank Yu
Susie Y. Huang
Ashwin S. Kumar
T. Witzel
Congyu Liao
Tanguy Duval
Berkin Bilgic
Erratum to: Rapid simultaneous acquisition of macromolecular tissue volume, susceptibility, and relaxometry maps (Magn Reson Med. 2022;87:781‐790.)
Fang Frank Yu
Susie Yi Huang
Ashwin Kumar
Thomas Witzel
Congyu Liao
Tanguy Duval
Berkin Bilgic