Publications

LF-PPL: A Low-Level First Order Probabilistic Programming Language for Non-Differentiable Models
Yuanshuo Zhou
Bradley Gram-Hansen
Tobias Kohn
Tom Rainforth
Hongseok Yang
We develop a new Low-level, First-order Probabilistic Programming Language~(LF-PPL) suited for models containing a mix of continuous, discre… (see more)te, and/or piecewise-continuous variables. The key success of this language and its compilation scheme is in its ability to automatically distinguish parameters the density function is discontinuous with respect to, while further providing runtime checks for boundary crossings. This enables the introduction of new inference engines that are able to exploit gradient information, while remaining efficient for models which are not everywhere differentiable. We demonstrate this ability by incorporating a discontinuous Hamiltonian Monte Carlo (DHMC) inference engine that is able to deliver automated and efficient inference for non-differentiable models. Our system is backed up by a mathematical formalism that ensures that any model expressed in this language has a density with measure zero discontinuities to maintain the validity of the inference engine.
Reinforcement Learning in Stationary Mean-field Games
Jayakumar Subramanian
Multi-agent reinforcement learning has made significant progress in recent years, but it remains a hard problem. Hence, one often resorts to… (see more) developing learning algorithms for specific classes of multi-agent systems. In this paper we study reinforcement learning in a specific class of multi-agent systems systems called mean-field games. In particular, we consider learning in stationary mean-field games. We identify two different solution concepts---stationary mean-field equilibrium and stationary mean-field social-welfare optimal policy---for such games based on whether the agents are non-cooperative or cooperative, respectively. We then generalize these solution concepts to their local variants using bounded rationality based arguments. For these two local solution concepts, we present two reinforcement learning algorithms. We show that the algorithms converge to the right solution under mild technical conditions and demonstrate this using two numerical examples.
Stochastic Bit-Wise Iterative Decoding of Polar Codes
Kaining Han
Junchao Wang
Jianhao Hu
Polar codes have received recent attention due to their potential to be applied in advanced wireless communication protocols such as the fif… (see more)th generation mobile communication system (5G). Among the existing decoding algorithms, Belief Propagation (BP) exhibits high-throughput, low-latency, and soft output with a high hardware cost. Stochastic computing, as a form of approximate computing, provides a potential low-cost implementation solution for the BP algorithm. However, existing stochastic BP decoders suffer from a relatively long decoding latency resulting in low hardware efficiency. In this paper, a novel bit-wise iterative stochastic decoding architecture for the BP algorithm is proposed to improve the throughput and hardware efficiency. By utilizing the frozen bits of polar codes and stochastic computing, multiple novel optimization methods are presented to further speed up convergence and increase the hardware efficiency.
Stochastic Bit-Wise Iterative Decoding of Polar Codes
Kaining Han
Junchao Wang
Jianhao Hu
Polar codes have received recent attention due to their potential to be applied in advanced wireless communication protocols such as the fif… (see more)th generation mobile communication system (5G). Among the existing decoding algorithms, Belief Propagation (BP) exhibits high-throughput, low-latency, and soft output with a high hardware cost. Stochastic computing, as a form of approximate computing, provides a potential low-cost implementation solution for the BP algorithm. However, existing stochastic BP decoders suffer from a relatively long decoding latency resulting in low hardware efficiency. In this paper, a novel bit-wise iterative stochastic decoding architecture for the BP algorithm is proposed to improve the throughput and hardware efficiency. By utilizing the frozen bits of polar codes and stochastic computing, multiple novel optimization methods are presented to further speed up convergence and increase the hardware efficiency.
Prediction of Progression in Multiple Sclerosis Patients
Adrian Tousignant
Paul Lemaitre
Douglas Arnold
We present the first automatic end-to-end deep learning framework for the prediction of future patient disability progression (one year from… (see more) baseline) based on multi-modal brain Magnetic Resonance Images (MRI) of patients with Multiple Sclerosis (MS). The model uses parallel convolutional pathways, an idea introduced by the popular Inception net and is trained and tested on two large proprietary, multi-scanner, multi-center, clinical trial datasets of patients with Relapsing-Remitting Multiple Sclerosis (RRMS). Experiments on 465 patients on the placebo arms of the trials indicate that the model can accurately predict future disease progression, measured by a sustained increase in the extended disability status scale (EDSS) score over time. Using only the multi-modal MRI provided at baseline, the model achieves an AUC of 0.66 +- 0.055. However, when supplemental lesion label masks are provided as inputs as well, the AUC increases to 0.701 +- 0.027. Furthermore, we demonstrate that uncertainty estimates based on Monte Carlo dropout sample variance correlate with errors made by the model. Clinicians provided with the predictions computed by the model can therefore use the associated uncertainty estimates to assess which scans require further examination.
The Termination Critic
Anna Harutyunyan
Will Dabney
Diana L. Borsa
Nicolas Heess
Remi Munos
In this work, we consider the problem of autonomously discovering behavioral abstractions, or options, for reinforcement learning agents. We… (see more) propose an algorithm that focuses on the termination function, as opposed to - as is common - the policy. The termination function is usually trained to optimize a control objective: an option ought to terminate if another has better value. We offer a different, information-theoretic perspective, and propose that terminations should focus instead on the compressibility of the option’s encoding - arguably a key reason for using abstractions.To achieve this algorithmically, we leverage the classical options framework, and learn the option transition model as a “critic” for the termination function. Using this model, we derive gradients that optimize the desired criteria. We show that the resulting options are non-trivial, intuitively meaningful, and useful for learning.
Predicting conversion to psychosis in clinical high risk patients using resting-state functional MRI features
Jolie Mcdonnell
W. Hord
Jenna Reinen
Pablo Polosecki
Guillermo Cecchi
Recent progress in artificial intelligence provides researchers with a powerful set of machine learning tools for analyzing brain imaging da… (see more)ta. In this work, we explore a variety of classification algorithms and functional network features derived from resting-state fMRI data collected from clinical high-risk (prodromal schizophrenia) patients and controls, trying to identify features predictive of conversion to psychosis among a subset of CHR patients. While there are many existing studies suggesting that functional network features can be highly discriminative of schizophrenia when analyzing fMRI of patients suffering from the disease vs controls, few studies attempt to explore a similar approach to actual prediction of future psychosis development ahead of time, in the prodromal stage. Our preliminary results demonstrate the potential of fMRI functional network features to predict the conversion to psychosis in CHR patients. However, given the high variance of our results across different classifiers and subsets of data, a more extensive empirical investigation is required to reach more robust conclusions.
Anytime Tail Averaging
Tail averaging consists in averaging the last examples in a stream. Common techniques either have a memory requirement which grows with the … (see more)number of samples to average, are not available at every timestep or do not accomodate growing windows. We propose two techniques with a low constant memory cost that perform tail averaging with access to the average at every time step. We also show how one can improve the accuracy of that average at the cost of increased memory consumption.
Distributional reinforcement learning with linear function approximation
Despite many algorithmic advances, our theoretical understanding of practical distributional reinforcement learning methods remains limited.… (see more) One exception is Rowland et al. (2018)'s analysis of the C51 algorithm in terms of the Cramer distance, but their results only apply to the tabular setting and ignore C51's use of a softmax to produce normalized distributions. In this paper we adapt the Cramer distance to deal with arbitrary vectors. From it we derive a new distributional algorithm which is fully Cramer-based and can be combined to linear function approximation, with formal guarantees in the context of policy evaluation. In allowing the model's prediction to be any real vector, we lose the probabilistic interpretation behind the method, but otherwise maintain the appealing properties of distributional approaches. To the best of our knowledge, ours is the first proof of convergence of a distributional algorithm combined with function approximation. Perhaps surprisingly, our results provide evidence that Cramer-based distributional methods may perform worse than directly approximating the value function.
Distributional reinforcement learning with linear function approximation
Despite many algorithmic advances, our theoretical understanding of practical distributional reinforcement learning methods remains limited.… (see more) One exception is Rowland et al. (2018)'s analysis of the C51 algorithm in terms of the Cramer distance, but their results only apply to the tabular setting and ignore C51's use of a softmax to produce normalized distributions. In this paper we adapt the Cramer distance to deal with arbitrary vectors. From it we derive a new distributional algorithm which is fully Cramer-based and can be combined to linear function approximation, with formal guarantees in the context of policy evaluation. In allowing the model's prediction to be any real vector, we lose the probabilistic interpretation behind the method, but otherwise maintain the appealing properties of distributional approaches. To the best of our knowledge, ours is the first proof of convergence of a distributional algorithm combined with function approximation. Perhaps surprisingly, our results provide evidence that Cramer-based distributional methods may perform worse than directly approximating the value function.
Dendritic solutions to the credit assignment problem
Timothy P. Lillicrap
A Geometric Perspective on Optimal Representations for Reinforcement Learning
Will Dabney
Robert Dadashi
Adrien Ali Taiga
Dale Eric. Schuurmans
Tor Lattimore
Clare Lyle
We propose a new perspective on representation learning in reinforcement learning based on geometric properties of the space of value functi… (see more)ons. We leverage this perspective to provide formal evidence regarding the usefulness of value functions as auxiliary tasks. Our formulation considers adapting the representation to minimize the (linear) approximation of the value function of all stationary policies for a given environment. We show that this optimization reduces to making accurate predictions regarding a special class of value functions which we call adversarial value functions (AVFs). We demonstrate that using value functions as auxiliary tasks corresponds to an expected-error relaxation of our formulation, with AVFs a natural candidate, and identify a close relationship with proto-value functions (Mahadevan, 2005). We highlight characteristics of AVFs and their usefulness as auxiliary tasks in a series of experiments on the four-room domain.