We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Impact in Software Engineering Activities After One Year of COVID-19 Restrictions for Startups and Established Companies
The restrictions imposed by the COVID-19 pandemic required software development teams to adapt, being forced to work remotely and adjust the… (see more) software engineering activities accordingly. In the studies evaluating these effects, a few have assessed the impact on software engineering activities from a broader perspective and after a period of time when teams had time to adjust to the changes. No studies have been found comparing software startups and established companies either. This paper aims to investigate the impacts of COVID-19 on software development activities after one year of the pandemic restrictions, comparing the results between startups and established companies. Our approach was to design a cross-sectional survey and distribute it online among software development companies worldwide. The participants were asked about their perception of COVID-19’s pandemic impact on different software engineering activities: requirements engineering, software architecture, user experience design, software implementation, and software quality assurance. The survey received 170 valid answers from 29 countries, and for all the software engineering activities, we found that most respondents did not observe a significant impact. The results also showed that software startups and established companies were affected differently since, in some activities, we found a negative impact in the former and a positive impact in the latter. Regarding the time spent on each software engineering activity, most of the answers reported no change, but on those that did, the result points to an increase in time. Thus, we cannot find any relation between the change in time of effort and the reported positive or negative impact.
Deep reinforcement learning (DRL) is increasingly applied in large-scale productions like Netflix and Facebook. As with most data-driven sys… (see more)tems, DRL systems can exhibit undesirable behaviors due to environmental drifts, which often occur in constantly-changing production settings. Continual Learning (CL) is the inherent self-healing approach for adapting the DRL agent in response to the environment's conditions shifts. However, successive shifts of considerable magnitude may cause the production environment to drift from its original state. Recent studies have shown that these environmental drifts tend to drive CL into long, or even unsuccessful, healing cycles, which arise from inefficiencies such as catastrophic forgetting, warm-starting failure, and slow convergence. In this paper, we propose Dr. DRL, an effective self-healing approach for DRL systems that integrates a novel mechanism of intentional forgetting into vanilla CL (i.e., standard CL) to overcome its main issues. Dr. DRL deliberately erases the DRL system's minor behaviors to systematically prioritize the adaptation of the key problem-solving skills. Using well-established DRL algorithms, Dr. DRL is compared with vanilla CL on various drifted environments. Dr. DRL is able to reduce, on average, the healing time and fine-tuning episodes by, respectively, 18.74% and 17.72%. Dr. DRL successfully helps agents to adapt to 19.63% of drifted environments left unsolved by vanilla CL while maintaining and even enhancing by up to 45% the obtained rewards for drifted environments that are resolved by both approaches.
2023-01-01
2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE) (published)
We present a dataset of videos and comments from the social media platform TikTok, centred around the invasion of Ukraine in 2022, an event … (see more)that launched TikTok into the geopolitical arena. The discourse around the invasion exposed myriad political behaviours and dynamics that are unexplored on this platform. To this end we provide a mass scale language and interaction dataset for further research into these processes. An initial investigation of language and social interaction dynamics are explored in this paper. The dataset and the library used to collect it are open sourced to the public.
Invited commentary on Stoehr J et al: The personal impact of involvement in international global health outreach: A national survey of former operation smile student volunteers.
We present a novel perspective on behavioural metrics for Markov decision processes via the use of positive definite kernels. We define a ne… (see more)w metric under this lens that is provably equivalent to the recently introduced MICo distance (Castro et al., 2021). The kernel perspective enables us to provide new theoretical results, including value-function bounds and low-distortion finite-dimensional Euclidean embeddings, which are crucial when using behavioural metrics for reinforcement learning representations. We complement our theory with strong empirical results that demonstrate the effectiveness of these methods in practice.
Aiming to build foundation models for time-series forecasting and study their scaling behavior, we present here our work-in-progress on Lag-… (see more)Llama , a general-purpose univariate probabilistic time-series forecasting model trained on a large collection of time-series data. The model shows good zero-shot prediction capabilities on unseen “out-of-distribution” time-series datasets, outperforming supervised baselines. We use smoothly broken power-laws [7] to fit and predict model scaling behavior. The open source code is made available at https://github
Adversarial formulations have rekindled interest in two-player min-max games. A central obstacle in the optimization of such games is the ro… (see more)tational dynamics that hinder their convergence. In this paper, we show that game optimization shares dynamic properties with particle systems subject to multiple forces, and one can leverage tools from physics to improve optimization dynamics. Inspired by the physical framework, we propose LEAD, an optimizer for min-max games. Next, using Lyapunov stability theory from dynamical systems as well as spectral analysis, we study LEAD’s convergence properties in continuous and discrete time settings for a class of quadratic min-max games to demonstrate linear convergence to the Nash equilibrium. Finally, we empirically evaluate our method on synthetic setups and CIFAR-10 image generation to demonstrate improvements in GAN training.
Generative flow networks (GFlowNets) are a family of algorithms for training a sequential sampler of discrete objects under an unnormalized … (see more)target density and have been successfully used for various probabilistic modeling tasks. Existing training objectives for GFlowNets are either local to states or transitions, or propagate a reward signal over an entire sampling trajectory. We argue that these alternatives represent opposite ends of a gradient bias-variance tradeoff and propose a way to exploit this tradeoff to mitigate its harmful effects. Inspired by the TD(
Imitation learning is a paradigm to address complex motion planning problems by learning a policy to imitate an expert’s behavior. However… (see more), relying solely on the expert’s data might lead to unsafe actions when the robot deviates from the demonstrated trajectories. Stability guarantees have previously been provided utilizing nonlinear dynamical systems, acting as high-level motion planners, in conjunction with the Lyapunov stability theorem. Yet, these methods are prone to inaccurate policies, high computational cost, sample inefficiency, or quasi stability when replicating complex and highly nonlinear trajectories. To mitigate this problem, we present an approach for learning a globally stable nonlinear dynamical system as a motion planning policy. We model the nonlinear dynamical system as a parametric polynomial and learn the polynomial’s coefficients jointly with a Lyapunov candidate. To showcase its success, we compare our method against the state of the art in simulation and conduct real-world experiments with the Kinova Gen3 Lite manipulator arm. Our experiments demonstrate the sample efficiency and reproduction accuracy of our method for various expert trajectories, while remaining stable in the face of perturbations.