Publications

Zero-Shot Fault Detection for Manipulators Through Bayesian Inverse Reinforcement Learning
We consider the detection of faults in robotic manipulators, with particular emphasis on faults that have not been observed or identified in… (see more) advance, which naturally includes those that occur very infrequently. Recent studies indicate that the reward function obtained through Inverse Reinforcement Learning (IRL) can help detect anomalies caused by faults in a control system (i.e. fault detection). Current IRL methods for fault detection, however, either use a linear reward representation or require extensive sampling from the environment to estimate the policy, rendering them inappropriate for safety-critical situations where sampling of failure observations via fault injection can be expensive and dangerous. To address this issue, this paper proposes a zero-shot and exogenous fault detector based on an approximate variational reward imitation learning (AVRIL) structure. The fault detector recovers a reward signal as a function of externally observable information to describe the normal operation, which can then be used to detect anomalies caused by faults. Our method incorporates expert knowledge through a customizable reward prior distribution, allowing the fault detector to learn the reward solely from normal operation samples, without the need for a simulator or costly interactions with the environment. We evaluate our approach for exogenous partial fault detection in multi-stage robotic manipulator tasks, comparing it with several baseline methods. The results demonstrate that our method more effectively identifies unseen faults even when they occur within just three controller time steps.
Effectiveness of regional diffusion MRI measures in distinguishing multiple sclerosis abnormalities within the cervical spinal cord
Haykel Snoussi
Olivier Commowick
Benoit Combes
Elise Bannier
Slimane Tounekti
Anne Kerbrat
Christian Barillot
Emmanuel Caruyer
Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system. Although conventional magnetic resonance imaging (MRI) is… (see more) widely used for MS diagnosis and clinical follow‐up, quantitative MRI has the potential to provide valuable intrinsic values of tissue properties that can enhance accuracy. In this study, we investigate the efficacy of diffusion MRI in distinguishing MS lesions within the cervical spinal cord, using a combination of metrics extracted from diffusion tensor imaging and Ball‐and‐Stick models.
PEACE: Prompt Engineering Automation for CLIPSeg Enhancement in Aerial Robotics
Haechan Mark Bong
Rongge Zhang
Ricardo de Azambuja
From industrial to space robotics, safe landing is an essential component for flight operations. With the growing interest in artificial int… (see more)elligence, we direct our attention to learning based safe landing approaches. This paper extends our previous work, DOVESEI, which focused on a reactive UAV system by harnessing the capabilities of open vocabulary image segmentation. Prompt-based safe landing zone segmentation using an open vocabulary based model is no more just an idea, but proven to be feasible by the work of DOVESEI. However, a heuristic selection of words for prompt is not a reliable solution since it cannot take the changing environment into consideration and detrimental consequences can occur if the observed environment is not well represented by the given prompt. Therefore, we introduce PEACE (Prompt Engineering Automation for CLIPSeg Enhancement), powering DOVESEI to automate the prompt generation and engineering to adapt to data distribution shifts. Our system is capable of performing safe landing operations with collision avoidance at altitudes as low as 20 meters using only monocular cameras and image segmentation. We take advantage of DOVESEI's dynamic focus to circumvent abrupt fluctuations in the terrain segmentation between frames in a video stream. PEACE shows promising improvements in prompt generation and engineering for aerial images compared to the standard prompt used for CLIP and CLIPSeg. Combining DOVESEI and PEACE, our system was able improve successful safe landing zone selections by 58.62% compared to using only DOVESEI. All the source code is open source and available online.
Tree Cross Attention
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Mohamed Osama Ahmed
An Empirical Study of Retrieval-Enhanced Graph Neural Networks
Dingmin Wang
Shengchao Liu
Hanchen Wang
Bernardo Cuenca Grau
Linfeng Song
Le Song
Qi Liu
Graph Neural Networks (GNNs) are effective tools for graph representation learning. Most GNNs rely on a recursive neighborhood aggregation s… (see more)cheme, named message passing, thereby their theoretical expressive power is limited to the first-order Weisfeiler-Lehman test (1-WL). An effective approach to this challenge is to explicitly retrieve some annotated examples used to enhance GNN models. While retrieval-enhanced models have been proved to be effective in many language and vision domains, it remains an open question how effective retrieval-enhanced GNNs are when applied to graph datasets. Motivated by this, we want to explore how the retrieval idea can help augment the useful information learned in the graph neural networks, and we design a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models. In GRAPHRETRIEVAL, for each input graph, similar graphs together with their ground-true labels are retrieved from an existing database. Thus they can act as a potential enhancement to complete various graph property predictive tasks. We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs. Moreover, our empirical study also illustrates that retrieval enhancement is a promising remedy for alleviating the long-tailed label distribution problem.
Influence of preprocessing, distortion correction and cardiac triggering on the quality of diffusion MR images of spinal cord
Kurt G Schilling
Anna J. E. Combes
Karthik Ramadass
Francois Rheault
Grace Sweeney
Logan Prock
Subramaniam Sriram
John C Gore
Bennett A Landman
Seth A. Smith
Kristin P. O’Grady
Diffusion MRI of the spinal cord (SC) is susceptible to geometric distortion caused by field inhomogeneities, and prone to misalignment acro… (see more)ss time series and signal dropout caused by biological motion. Several modifications of image acquisition and image processing techniques have been introduced to overcome these artifacts, but their specific benefits are largely unproven and warrant further investigations. We aim to evaluate two specific aspects of image acquisition and processing that address image quality in diffusion studies of the spinal cord: susceptibility corrections to reduce geometric distortions, and cardiac triggering to minimize motion artifacts. First, we evaluate 4 distortion preprocessing strategies on 7 datasets of the cervical and lumbar SC and find that while distortion correction techniques increase geometric similarity to structural images, they are largely driven by the high-contrast cerebrospinal fluid, and do not consistently improve the geometry within the cord nor improve white-to-gray matter contrast. We recommend at a minimum to perform bulk-motion correction in preprocessing and posit that improvements/adaptations are needed for spinal cord distortion preprocessing algorithms, which are currently optimized and designed for brain imaging. Second, we design experiments to evaluate the impact of removing cardiac triggering. We show that when triggering is foregone, images are qualitatively similar to triggered sequences, do not have increased prevalence of artifacts, and result in similar diffusion tensor indices with similar reproducibility to triggered acquisitions. When triggering is removed, much shorter acquisitions are possible, which are also qualitatively and quantitatively similar to triggered sequences. We suggest that removing cardiac triggering for cervical SC diffusion can be a reasonable option to save time with minimal sacrifice to image quality.
RECOVER identifies synergistic drug combinations in vitro through sequential model optimization
Paul Bertin
Jarrid Rector-Brooks
Deepak Sharma
Thomas Gaudelet
Andrew Anighoro
Torsten Gross
Francisco Martínez-Peña
Eileen L. Tang
M.S. Suraj
Cristian Regep
Jeremy B.R. Hayter
Maksym Korablyov
Nicholas Valiante
Almer van der Sloot
Mike Tyers
Charles E.S. Roberts
Michael M. Bronstein
Luke L. Lairson
Jake P. Taylor-King
Time Delay Cosmography with a Neural Ratio Estimator
Eve Campeau-Poirier
Adam Coogan
We explore the use of a Neural Ratio Estimator (NRE) to determine the Hubble constant (…
ClimateSet: A Large-Scale Climate Model Dataset for Machine Learning
Julia Kaltenborn
Charlotte Emilie Elektra Lange
Venkatesh Ramesh
Philippe Brouillard
Yaniv Gurwicz
Chandni Nagda
Jakob Runge
Peer Nowack
Climate models have been key for assessing the impact of climate change and simulating future climate scenarios. The machine learning (ML) c… (see more)ommunity has taken an increased interest in supporting climate scientists’ efforts on various tasks such as climate model emulation, downscaling, and prediction tasks. Many of those tasks have been addressed on datasets created with single climate models. However, both the climate science and ML communities have suggested that to address those tasks at scale, we need large, consistent, and ML-ready climate model datasets. Here, we introduce ClimateSet, a dataset containing the inputs and outputs of 36 climate models from the Input4MIPs and CMIP6 archives. In addition, we provide a modular dataset pipeline for retrieving and preprocessing additional climate models and scenarios. We showcase the potential of our dataset by using it as a benchmark for ML-based climate model emulation. We gain new insights about the performance and generalization capabilities of the different ML models by analyzing their performance across different climate models. Furthermore, the dataset can be used to train an ML emulator on several climate models instead of just one. Such a “super-emulator” can quickly project new climate change scenarios, complementing existing scenarios already provided to policymakers. We believe ClimateSet will create the basis needed for the ML community to tackle climate-related tasks at scale.
Evaluating Self-Supervised Learning for Molecular Graph Embeddings
Hanchen Wang
Jean Kaddour
Shengchao Liu
Matt J. Kusner
Joan Lasenby
Qi Liu
Graph Self-Supervised Learning (GSSL) provides a robust pathway for acquiring embeddings without expert labelling, a capability that carries… (see more) profound implications for molecular graphs due to the staggering number of potential molecules and the high cost of obtaining labels. However, GSSL methods are designed not for optimisation within a specific domain but rather for transferability across a variety of downstream tasks. This broad applicability complicates their evaluation. Addressing this challenge, we present"Molecular Graph Representation Evaluation"(MOLGRAPHEVAL), generating detailed profiles of molecular graph embeddings with interpretable and diversified attributes. MOLGRAPHEVAL offers a suite of probing tasks grouped into three categories: (i) generic graph, (ii) molecular substructure, and (iii) embedding space properties. By leveraging MOLGRAPHEVAL to benchmark existing GSSL methods against both current downstream datasets and our suite of tasks, we uncover significant inconsistencies between inferences drawn solely from existing datasets and those derived from more nuanced probing. These findings suggest that current evaluation methodologies fail to capture the entirety of the landscape.
GEO-Bench: Toward Foundation Models for Earth Monitoring
Alexandre Lacoste
Nils Lehmann
Pau Rodriguez
Evan David Sherwin
Hannah Kerner
Björn Lütjens
Jeremy Andrew Irvin
David Dao
Hamed Alemohammad
Mehmet Gunturkun
Gabriel Huang
David Vazquez
Dava Newman
Stefano Ermon
Xiao Xiang Zhu
Recent progress in self-supervision has shown that pre-training large neural networks on vast amounts of unsupervised data can lead to subst… (see more)antial increases in generalization to downstream tasks. Such models, recently coined foundation models, have been transformational to the field of natural language processing. Variants have also been proposed for image data, but their applicability to remote sensing tasks is limited. To stimulate the development of foundation models for Earth monitoring, we propose a benchmark comprised of six classification and six segmentation tasks, which were carefully curated and adapted to be both relevant to the field and well-suited for model evaluation. We accompany this benchmark with a robust methodology for evaluating models and reporting aggregated results to enable a reliable assessment of progress. Finally, we report results for 20 baselines to gain information about the performance of existing models. We believe that this benchmark will be a driver of progress across a variety of Earth monitoring tasks.
Minigrid & Miniworld: Modular & Customizable Reinforcement Learning Environments for Goal-Oriented Tasks
Maxime Chevalier-Boisvert
Bolun Dai
Mark Towers
Rodrigo De Lazcano Perez-Vicente
Lucas Willems
Salem Lahlou
Suman Pal
J K Terry
We present the Minigrid and Miniworld libraries which provide a suite of goal-oriented 2D and 3D environments. The libraries were explicitly… (see more) created with a minimalistic design paradigm to allow users to rapidly develop new environments for a wide range of research-specific needs. As a result, both have received widescale adoption by the RL community, facilitating research in a wide range of areas. In this paper, we outline the design philosophy, environment details, and their world generation API. We also showcase the additional capabilities brought by the unified API between Minigrid and Miniworld through case studies on transfer learning (for both RL agents and humans) between the different observation spaces. The source code of Minigrid and Miniworld can be found at https://github.com/Farama-Foundation/Minigrid and https://github.com/Farama-Foundation/Miniworld along with their documentation at https://minigrid.farama.org/ and https://miniworld.farama.org/.