Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Too Big to Fool: Resisting Deception in Language Models
Large language models must balance their weight-encoded knowledge with in-context information from prompts to generate accurate responses. T… (see more)his paper investigates this interplay by analyzing how models of varying capacities within the same family handle intentionally misleading in-context information. Our experiments demonstrate that larger models exhibit higher resilience to deceptive prompts, showcasing an advanced ability to interpret and integrate prompt information with their internal knowledge. Furthermore, we find that larger models outperform smaller ones in following legitimate instructions, indicating that their resilience is not due to disregarding in-context information. We also show that this phenomenon is likely not a result of memorization but stems from the models' ability to better leverage implicit task-relevant information from the prompt alongside their internally stored knowledge.
Large language models must balance their weight-encoded knowledge with in-context information from prompts to generate accurate responses. T… (see more)his paper investigates this interplay by analyzing how models of varying capacities within the same family handle intentionally misleading in-context information. Our experiments demonstrate that larger models exhibit higher resilience to deceptive prompts, showcasing an advanced ability to interpret and integrate prompt information with their internal knowledge. Furthermore, we find that larger models outperform smaller ones in following legitimate instructions, indicating that their resilience is not due to disregarding in-context information. We also show that this phenomenon is likely not a result of memorization but stems from the models' ability to better leverage implicit task-relevant information from the prompt alongside their internally stored knowledge.
Large language models must balance their weight-encoded knowledge with in-context information from prompts to generate accurate responses. T… (see more)his paper investigates this interplay by analyzing how models of varying capacities within the same family handle intentionally misleading in-context information. Our experiments demonstrate that larger models exhibit higher resilience to deceptive prompts, showcasing an advanced ability to interpret and integrate prompt information with their internal knowledge. Furthermore, we find that larger models outperform smaller ones in following legitimate instructions, indicating that their resilience is not due to disregarding in-context information. We also show that this phenomenon is likely not a result of memorization but stems from the models' ability to better leverage implicit task-relevant information from the prompt alongside their internally stored knowledge.
Software technologies are used by programmers with diverse backgrounds. To fulfill programmers' need for information, enthusiasts contribute… (see more) numerous learning resources that vary in style and content, which act as documentation for the corresponding technology. We interviewed 26 volunteer documentation contributors, i.e. documentors, to understand why and how they create such documentation. From a qualitative analysis of our interviews, we identified a total of sixteen considerations that documentors have during the documentation contribution process, along three dimensions, namely motivations, topic selection techniques, and styling objectives. We grouped related considerations based on common underlying themes, to elicit five software documentor mindsets that occur during documentation contribution activities. We propose a structure of mindsets, and their associated considerations across the three dimensions, as a framework for reasoning about the documentation contribution process. This framework can inform information seeking as well as documentation creation tools about the context in which documentation was contributed.
Software technologies are used by programmers with diverse backgrounds. To fulfill programmers' need for information, enthusiasts contribute… (see more) numerous learning resources that vary in style and content, which act as documentation for the corresponding technology. We interviewed 26 volunteer documentation contributors, i.e. documentors, to understand why and how they create such documentation. From a qualitative analysis of our interviews, we identified a total of sixteen considerations that documentors have during the documentation contribution process, along three dimensions, namely motivations, topic selection techniques, and styling objectives. We grouped related considerations based on common underlying themes, to elicit five software documentor mindsets that occur during documentation contribution activities. We propose a structure of mindsets, and their associated considerations across the three dimensions, as a framework for reasoning about the documentation contribution process. This framework can inform information seeking as well as documentation creation tools about the context in which documentation was contributed.
Software technologies are used by programmers with diverse backgrounds. To fulfill programmers' need for information, enthusiasts contribute… (see more) numerous learning resources that vary in style and content, which act as documentation for the corresponding technology. We interviewed 26 volunteer documentation contributors, i.e. documentors, to understand why and how they create such documentation. From a qualitative analysis of our interviews, we identified a total of sixteen considerations that documentors have during the documentation contribution process, along three dimensions, namely motivations, topic selection techniques, and styling objectives. We grouped related considerations based on common underlying themes, to elicit five software documentor mindsets that occur during documentation contribution activities. We propose a structure of mindsets, and their associated considerations across the three dimensions, as a framework for reasoning about the documentation contribution process. This framework can inform information seeking as well as documentation creation tools about the context in which documentation was contributed.
We examine the capability of Multimodal Large Language Models (MLLMs) to tackle diverse domains that extend beyond the traditional language … (see more)and vision tasks these models are typically trained on. Specifically, our focus lies in areas such as Embodied AI, Games, UI Control, and Planning. To this end, we introduce a process of adapting an MLLM to a Generalist Embodied Agent (GEA). GEA is a single unified model capable of grounding itself across these varied domains through a multi-embodiment action tokenizer. GEA is trained with supervised learning on a large dataset of embodied experiences and with online RL in interactive simulators. We explore the data and algorithmic choices necessary to develop such a model. Our findings reveal the importance of training with cross-domain data and online RL for building generalist agents. The final GEA model achieves strong generalization performance to unseen tasks across diverse benchmarks compared to other generalist models and benchmark-specific approaches.
We examine the capability of Multimodal Large Language Models (MLLMs) to tackle diverse domains that extend beyond the traditional language … (see more)and vision tasks these models are typically trained on. Specifically, our focus lies in areas such as Embodied AI, Games, UI Control, and Planning. To this end, we introduce a process of adapting an MLLM to a Generalist Embodied Agent (GEA). GEA is a single unified model capable of grounding itself across these varied domains through a multi-embodiment action tokenizer. GEA is trained with supervised learning on a large dataset of embodied experiences and with online RL in interactive simulators. We explore the data and algorithmic choices necessary to develop such a model. Our findings reveal the importance of training with cross-domain data and online RL for building generalist agents. The final GEA model achieves strong generalization performance to unseen tasks across diverse benchmarks compared to other generalist models and benchmark-specific approaches.
Nowadays, we are witnessing an increasing adoption of Artificial Intelligence (AI) to develop techniques aimed at improving the reliability,… (see more) effectiveness, and overall quality of software systems. Deep reinforcement learning (DRL) has recently been successfully used for automation in complex tasks such as game testing and solving the job-shop scheduling problem. However, these specialized DRL agents, trained from scratch on specific tasks, suffer from a lack of generalizability to other tasks and they need substantial time to be developed and re-trained effectively. Recently, DRL researchers have begun to develop generalist agents, able to learn a policy from various environments and capable of achieving performances similar to or better than specialist agents in new tasks. In the Natural Language Processing or Computer Vision domain, these generalist agents are showing promising adaptation capabilities to never-before-seen tasks after a light fine-tuning phase and achieving high performance. This paper investigates the potential of generalist agents for solving SE tasks. Specifically, we conduct an empirical study aimed at assessing the performance of two generalist agents on two important SE tasks: the detection of bugs in games (for two games) and the minimization of makespan in a scheduling task, to solve the job-shop scheduling problem (for two instances). Our results show that the generalist agents outperform the specialist agents with very little effort for fine-tuning, achieving a 20% reduction of the makespan over specialized agent performance on task-based scheduling. In the context of game testing, some generalist agent configurations detect 85% more bugs than the specialist agents. Building on our analysis, we provide recommendations for researchers and practitioners looking to select generalist agents for SE tasks, to ensure that they perform effectively.