Publications

An Empirical Study of Self-Admitted Technical Debt in Machine Learning Software
Aaditya Bhatia
Bram Adams
Ahmed E. Hassan
The emergence of open-source ML libraries such as TensorFlow and Google Auto ML has enabled developers to harness state-of-the-art ML algori… (see more)thms with minimal overhead. However, during this accelerated ML development process, said developers may often make sub-optimal design and implementation decisions, leading to the introduction of technical debt that, if not addressed promptly, can have a significant impact on the quality of the ML-based software. Developers frequently acknowledge these sub-optimal design and development choices through code comments during software development. These comments, which often highlight areas requiring additional work or refinement in the future, are known as self-admitted technical debt (SATD). This paper aims to investigate SATD in ML code by analyzing 318 open-source ML projects across five domains, along with 318 non-ML projects. We detected SATD in source code comments throughout the different project snapshots, conducted a manual analysis of the identified SATD sample to comprehend the nature of technical debt in the ML code, and performed a survival analysis of the SATD to understand the evolution of such debts. We observed: i) Machine learning projects have a median percentage of SATD that is twice the median percentage of SATD in non-machine learning projects. ii) ML pipeline components for data preprocessing and model generation logic are more susceptible to debt than model validation and deployment components. iii) SATDs appear in ML projects earlier in the development process compared to non-ML projects. iv) Long-lasting SATDs are typically introduced during extensive code changes that span multiple files exhibiting low complexity.
Responsible AI Research Needs Impact Statements Too
Michael Ekstrand
Carlos Castillo
Jina Suh
All types of research, development, and policy work can have unintended, adverse consequences - work in responsible artificial intelligence … (see more)(RAI), ethical AI, or ethics in AI is no exception.
Task-Agnostic Continual Reinforcement Learning: Gaining Insights and Overcoming Challenges
Massimo Caccia
Jonas Mueller
Taesup Kim
Rasool Fakoor
Tensor-based Space Debris Detection for Satellite Mega-constellations
Olivier Daoust
Hasan Nayir
Irfan Azam
G. Kurt
Towards Few-shot Coordination: Revisiting Ad-hoc Teamplay Challenge In the Game of Hanabi
Hadi Nekoei
Xutong Zhao
Janarthanan Rajendran
Miao Liu
Inferring dynamic regulatory interaction graphs from time series data with perturbations
Dhananjay Bhaskar
Daniel Sumner Magruder
Edward De Brouwer
Matheo Morales
Aarthi Venkat
Frederik Wenkel
Smita Krishnaswamy
MUDiff: Unified Diffusion for Complete Molecule Generation
Chenqing Hua
Sitao Luan
Minkai Xu
Zhitao Ying
Rex Ying
Jie Fu
Stefano Ermon
The evidence mismatch in pediatric surgical practice
Marina Broomfield
Zena Agabani
Elena Guadagno
Robert Baird
Differentiable visual computing for inverse problems and machine learning
Andrew Spielberg
Fangcheng Zhong
Konstantinos Rematas
Krishna Murthy
Cengiz Oztireli
Tzu-Mao Li
AfriMTE and AfriCOMET: Enhancing COMET to Embrace Under-resourced African Languages
Jiayi Wang
Sweta Agrawal
Marek Masiak
Ricardo Rei
Eleftheria Briakou
Marine Carpuat
Xuanli He
Sofia Bourhim
Andiswa Bukula
Muhidin A. Mohamed
Temitayo Olatoye
Tosin Adewumi
Hamam Mokayede
Christine Mwase
Wangui Kimotho
Foutse Yuehgoh
Aremu Anuoluwapo
Jessica Ojo
Shamsuddeen Hassan Muhammad … (see 38 more)
Salomey Osei
Abdul-Hakeem Omotayo
Chiamaka Ijeoma Chukwuneke
Perez Ogayo
Oumaima Hourrane
Salma El Anigri
Lolwethu Ndolela
Thabiso Mangwana
Shafie Abdi Mohamed
Ayinde Hassan
Oluwabusayo Olufunke Awoyomi
Lama Alkhaled
sana Sabah al-azzawi
Naome A. Etori
Millicent A. Ochieng
Clemencia Siro
Samuel Njoroge
Eric Muchiri
Wangari Kimotho
Lyse Naomi Wamba Momo
Daud Abolade
Simbiat Ajao
Iyanuoluwa Shode
Ricky Macharm
Ruqayya Nasir Iro
Saheed Salahudeen Abdullahi
Stephen E. Moore
Bernard Opoku
Zainab Akinjobi
Abeeb Afolabi
Nnaemeka Casmir Obiefuna
Onyekachi Ogbu
Sam Brian
Verrah Akinyi Otiende
CHINEDU EMMANUEL MBONU
Toadoum Sari Sakayo
Yao Lu
Pontus Stenetorp
Despite the recent progress on scaling multilingual machine translation (MT) to several under-resourced African languages, accurately measur… (see more)ing this progress remains challenging, since evaluation is often performed on n-gram matching metrics such as BLEU, which typically show a weaker correlation with human judgments. Learned metrics such as COMET have higher correlation; however, the lack of evaluation data with human ratings for under-resourced languages, complexity of annotation guidelines like Multidimensional Quality Metrics (MQM), and limited language coverage of multilingual encoders have hampered their applicability to African languages. In this paper, we address these challenges by creating high-quality human evaluation data with simplified MQM guidelines for error detection and direct assessment (DA) scoring for 13 typologically diverse African languages. Furthermore, we develop AfriCOMET: COMET evaluation metrics for African languages by leveraging DA data from well-resourced languages and an African-centric multilingual encoder (AfroXLM-R) to create the state-of-the-art MT evaluation metrics for African languages with respect to Spearman-rank correlation with human judgments (0.441).
Evaluating In-Context Learning of Libraries for Code Generation
Arkil Patel
Pradeep Dasigi
Generalizable Imitation Learning Through Pre-Trained Representations
Wei-Di Chang
Francois R. Hogan
In this paper we leverage self-supervised vision transformer models and their emergent semantic abilities to improve the generalization abil… (see more)ities of imitation learning policies. We introduce BC-ViT, an imitation learning algorithm that leverages rich DINO pre-trained Visual Transformer (ViT) patch-level embeddings to obtain better generalization when learning through demonstrations. Our learner sees the world by clustering appearance features into semantic concepts, forming stable keypoints that generalize across a wide range of appearance variations and object types. We show that this representation enables generalized behaviour by evaluating imitation learning across a diverse dataset of object manipulation tasks. Our method, data and evaluation approach are made available to facilitate further study of generalization in Imitation Learners.