Publications

Understanding by Understanding Not: Modeling Negation in Language Models
Negation is a core construction in natural language. Despite being very successful on many tasks, state-of-the-art pre-trained language mode… (see more)ls often handle negation incorrectly. To improve language models in this regard, we propose to augment the language modeling objective with an unlikelihood objective that is based on negated generic sentences from a raw text corpus. By training BERT with the resulting combined objective we reduce the mean top 1 error rate to 4% on the negated LAMA dataset. We also see some improvements on the negated NLI benchmarks.
On the benefits of representation regularization in invariance based domain generalization
Changjian Shui
Boyu Wang
Gotta Go Fast When Generating Data with Score-Based Models
Alexia Jolicoeur-Martineau
Ke Li
Rémi Piché-Taillefer
Tal Kachman
Score-based (denoising diffusion) generative models have recently gained a lot of success in generating realistic and diverse data. These ap… (see more)proaches define a forward diffusion process for transforming data to noise and generate data by reversing it (thereby going from noise to data). Unfortunately, current score-based models generate data very slowly due to the sheer number of score network evaluations required by numerical SDE solvers. In this work, we aim to accelerate this process by devising a more efficient SDE solver. Existing approaches rely on the Euler-Maruyama (EM) solver, which uses a fixed step size. We found that naively replacing it with other SDE solvers fares poorly - they either result in low-quality samples or become slower than EM. To get around this issue, we carefully devise an SDE solver with adaptive step sizes tailored to score-based generative models piece by piece. Our solver requires only two score function evaluations, rarely rejects samples, and leads to high-quality samples. Our approach generates data 2 to 10 times faster than EM while achieving better or equal sample quality. For high-resolution images, our method leads to significantly higher quality samples than all other methods tested. Our SDE solver has the benefit of requiring no step size tuning.
Noised Consistency Training for Text Summarization
J. Liu
Qianren Mao
Hao Peng
Hongdong Zhu
Jianxin Li
Neural abstractive summarization methods often require large quantities of labeled training data. However, labeling large amounts of summari… (see more)zation data is often prohibitive due to time, financial, and expertise constraints, which has limited the usefulness of summarization systems to practical applications. In this paper, we argue that this limitation can be overcome by a semi-supervised approach: consistency training which is to leverage large amounts of unlabeled data to improve the performance of supervised learning over a small corpus. The consistency regularization semi-supervised learning can regularize model predictions to be invariant to small noise applied to input articles. By adding noised unlabeled corpus to help regularize consistency training, this framework obtains comparative performance without using the full dataset. In particular, we have verified that leveraging large amounts of unlabeled data decently improves the performance of supervised learning over an insufficient labeled dataset.
Learning Brain Dynamics With Coupled Low-Dimensional Nonlinear Oscillators and Deep Recurrent Networks
Germán Abrevaya
Aleksandr Y. Aravkin
Peng Zheng
Jean-Christophe Gagnon-Audet
James Kozloski
Pablo Polosecki
David Cox
Silvina Ponce Dawson
Guillermo Cecchi
Many natural systems, especially biological ones, exhibit complex multivariate nonlinear dynamical behaviors that can be hard to capture by … (see more)linear autoregressive models. On the other hand, generic nonlinear models such as deep recurrent neural networks often require large amounts of training data, not always available in domains such as brain imaging; also, they often lack interpretability. Domain knowledge about the types of dynamics typically observed in such systems, such as a certain type of dynamical systems models, could complement purely data-driven techniques by providing a good prior. In this work, we consider a class of ordinary differential equation (ODE) models known as van der Pol (VDP) oscil lators and evaluate their ability to capture a low-dimensional representation of neural activity measured by different brain imaging modalities, such as calcium imaging (CaI) and fMRI, in different living organisms: larval zebrafish, rat, and human. We develop a novel and efficient approach to the nontrivial problem of parameters estimation for a network of coupled dynamical systems from multivariate data and demonstrate that the resulting VDP models are both accurate and interpretable, as VDP's coupling matrix reveals anatomically meaningful excitatory and inhibitory interactions across different brain subsystems. VDP outperforms linear autoregressive models (VAR) in terms of both the data fit accuracy and the quality of insight provided by the coupling matrices and often tends to generalize better to unseen data when predicting future brain activity, being comparable to and sometimes better than the recurrent neural networks (LSTMs). Finally, we demonstrate that our (generative) VDP model can also serve as a data-augmentation tool leading to marked improvements in predictive accuracy of recurrent neural networks. Thus, our work contributes to both basic and applied dimensions of neuroimaging: gaining scientific insights and improving brain-based predictive models, an area of potentially high practical importance in clinical diagnosis and neurotechnology.
Inferring global-scale temporal latent topics from news reports to predict public health interventions for COVID-19
Zhi Wen
Guido Powell
Imane Chafi
Y. K. Li
Artificial intelligence in nursing: Priorities and opportunities from an international invitational think‐tank of the Nursing and Artificial Intelligence Leadership Collaborative
Charlene Esteban Ronquillo
Laura‐Maria Peltonen
Lisiane Pruinelli
Charlene H Chu
Suzanne Bakken
Ana Beduschi
Kenrick Cato
Nicholas Hardiker
Alain Junger
Martin Michalowski
Rune Nyrup
Donald Nigel Reed
Tapio Salakoski
Sanna Salanterä
Nancy Walton
Patrick Weber
Thomas Wiegand
Maxim Topaz
Deep Discourse Analysis for Generating Personalized Feedback in Intelligent Tutor Systems
Matt Grenander
Robert Belfer
Ekaterina Kochmar
Iulian V. Serban
Franccois St-Hilaire
We explore creating automated, personalized feedback in an intelligent tutoring system (ITS). Our goal is to pinpoint correct and incorrect … (see more)concepts in student answers in order to achieve better student learning gains. Although automatic methods for providing personalized feedback exist, they do not explicitly inform students about which concepts in their answers are correct or incorrect. Our approach involves decomposing students answers using neural discourse segmentation and classification techniques. This decomposition yields a relational graph over all discourse units covered by the reference solutions and student answers. We use this inferred relational graph structure and a neural classifier to match student answers with reference solutions and generate personalized feedback. Although the process is completely automated and data-driven, the personalized feedback generated is highly contextual, domain-aware and effectively targets each student's misconceptions and knowledge gaps. We test our method in a dialogue-based ITS and demonstrate that our approach results in high-quality feedback and significantly improved student learning gains.
DIBS: Diversity inducing Information Bottleneck in Model Ensembles
Samarth Sinha
Homanga Bharadhwaj
Anirudh Goyal
Animesh Garg
Florian Shkurti
Individual Fairness in Kidney Exchange Programs
William St-Arnaud
Behrouz Babaki
Meta-learning framework with applications to zero-shot time-series forecasting
Boris Oreshkin
Dmitri Carpov
Can meta-learning discover generic ways of processing time series (TS) from a diverse dataset so as to greatly improve generalization on new… (see more) TS coming from different datasets? This work provides positive evidence to this using a broad meta-learning framework which we show subsumes many existing meta-learning algorithms. Our theoretical analysis suggests that residual connections act as a meta-learning adaptation mechanism, generating a subset of task-specific parameters based on a given TS input, thus gradually expanding the expressive power of the architecture on-the-fly. The same mechanism is shown via linearization analysis to have the interpretation of a sequential update of the final linear layer. Our empirical results on a wide range of data emphasize the importance of the identified meta-learning mechanisms for successful zero-shot univariate forecasting, suggesting that it is viable to train a neural network on a source TS dataset and deploy it on a different target TS dataset without retraining, resulting in performance that is at least as good as that of state-of-practice univariate forecasting models.
Metrics and continuity in reinforcement learning