Publications

The epidemiological impact of the Canadian COVID Alert app
Shuo Sun
Mairead Shaw
Erica E. M. Moodie
Derek Ruths
We analyzed the effectiveness of the Canadian COVID Alert app on reducing COVID-19 infections and deaths due to the COVID-19 virus. Two sepa… (see more)rate but complementary approaches were taken. First, we undertook a comparative study to assess how the adoption and usage of the COVID Alert app compared to those of similar apps deployed in other regions. Next, we used data from the COVID Alert server and a range of plausible parameter values to estimate the numbers of infections and deaths averted in Canada using a model that combines information on number of notifications, secondary attack rate, expected fraction of transmissions that could be prevented, quarantine effectiveness, and expected size of the full transmission chain in the absence of exposure notification. The comparative analysis revealed that the COVID Alert app had among the lowest adoption levels among apps that reported usage. Our model indicates that use of the COVID Alert app averted between 6284 and 10,894 infections across the six Canadian provinces where app usage was highest during the March–July 2021 period. This range is equivalent to 1.6–2.9% of the total recorded infections across Canada in that time. Using province-specific case fatality rates, 57–101 deaths were averted during the same period. The number of cases and deaths averted was greatest in Ontario, whereas the proportion of cases and deaths averted was greatest in Newfoundland and Labrador. App impact measures were reported so rarely and so inconsistently by other regions that the relative assessment of impact is inconclusive. While the nationwide rates are low, provinces with widespread adoption of the app showed high ratios of averted cases and deaths (upper bound was greater than 60% of averted cases). This finding suggests that the COVID Alert app, when adopted at sufficient levels, can be an effective public health tool for combatting a pandemic such as COVID-19.
$\alpha$-ReQ : Assessing Representation Quality in Self-Supervised Learning by measuring eigenspectrum decay
Kumar Krishna Agrawal
Arnab Kumar Mondal
Arna Ghosh
Self-Supervised Learning (SSL) with large-scale unlabelled datasets enables learning useful representations for multiple downstream tasks. H… (see more)owever, assessing the quality of such representations efficiently poses nontrivial challenges. Existing approaches train linear probes (with frozen features) to evaluate performance on a given task. This is expensive both computationally, since it requires retraining a new prediction head for each downstream task, and statistically, requires task-specific labels for multiple tasks. This poses a natural question, how do we efficiently determine the "goodness" of representations learned with SSL across a wide range of potential downstream tasks? In particular, a task-agnostic statistical measure of representation quality, that predicts generalization without explicit downstream task evaluation, would be highly desirable. In this work, we analyze characteristics of learned representations
Analysis of the Human Pineal Proteome by Mass Spectrometry
Mariette Matondo
Erik Maronde
Approximate information state for approximate planning and reinforcement learning in partially observed systems
Jayakumar Subramanian
Amit Sinha
Raihan Seraj
We propose a theoretical framework for approximate planning and learning in partially observed systems. Our framework is based on the fundam… (see more)ental notion of information state. We provide two equivalent definitions of information state---i) a function of history which is sufficient to compute the expected reward and predict its next value; ii) equivalently, a function of the history which can be recursively updated and is sufficient to compute the expected reward and predict the next observation. An information state always leads to a dynamic programming decomposition. Our key result is to show that if a function of the history (called approximate information state (AIS)) approximately satisfies the properties of the information state, then there is a corresponding approximate dynamic program. We show that the policy computed using this is approximately optimal with bounded loss of optimality. We show that several approximations in state, observation and action spaces in literature can be viewed as instances of AIS. In some of these cases, we obtain tighter bounds. A salient feature of AIS is that it can be learnt from data. We present AIS based multi-time scale policy gradient algorithms. and detailed numerical experiments with low, moderate and high dimensional environments.
Approximate minimization of weighted tree automata
Borja Balle
Aspirations and Practice of Model Documentation: Moving the Needle with Nudging and Traceability
Avinash Bhat
Austin Coursey
Grace Hu
Sixian Li
Nadia Nahar
Shurui Zhou
Christian Kästner
Behind the Machine's Gaze: Neural Networks with Biologically-inspired Constraints Exhibit Human-like Visual Attention
Leo Schwinn
Bjoern Eskofier
Dario Zanca
By and large, existing computational models of visual attention tacitly assume perfect vision and full access to the stimulus and thereby de… (see more)viate from foveated biological vision. Moreover, modeling top-down attention is generally reduced to the integration of semantic features without incorporating the signal of a high-level visual tasks that have been shown to partially guide human attention. We propose the Neural Visual Attention (NeVA) algorithm to generate visual scanpaths in a top-down manner. With our method, we explore the ability of neural networks on which we impose a biologically-inspired foveated vision constraint to generate human-like scanpaths without directly training for this objective. The loss of a neural network performing a downstream visual task (i.e., classification or reconstruction) flexibly provides top-down guidance to the scanpath. Extensive experiments show that our method outperforms state-of-the-art unsupervised human attention models in terms of similarity to human scanpaths. Additionally, the flexibility of the framework allows to quantitatively investigate the role of different tasks in the generated visual behaviors. Finally, we demonstrate the superiority of the approach in a novel experiment that investigates the utility of scanpaths in real-world applications, where imperfect viewing conditions are given.
Beyond accuracy: generalization properties of bio-plausible temporal credit assignment rules
Yuhan Helena Liu
Arna Ghosh
Eric Todd SheaBrown
Beyond Mahalanobis Distance for Textual OOD Detection
Pierre Colombo
Eduardo Dadalto Câmara Gomes
Guillaume Staerman
Nathan Noiry
Bisimulation metrics and norms for real-weighted automata
Borja Balle
Pascale Gourdeau
Building Together - Towards a Roadmap for African Language Technologies
Kathleen Siminyu
Jade Abbott
Kọ́lá Túbọ̀sún
Aremu Anuoluwapo
Blessing Kudzaishe Sibanda
Kofi Yeboah
Masabata Mokgesi-Selinga
Frederick R. Apina
Angela Thandizwe Mthembu
Arshath Ramkilowan
Babatunde Oladimeji
Cognitive Models as Simulators: The Case of Moral Decision-Making
Ardavan S. Nobandegani
T. Shultz