Publications

Mirror Descent Algorithms with Nearly Dimension-Independent Rates for Differentially-Private Stochastic Saddle-Point Problems
Tom'as Gonz'alez
Crist'obal Guzm'an
Optimisation of quantitative brain diffusion-relaxation MRI acquisition protocols with physics-informed machine learning.
Álvaro Planchuelo-Gómez
Maxime Descoteaux
Jana Hutter
Derek K. Jones
C. Tax
Plant invasion in Mediterranean Europe: current hotspots and future scenarios
Luigi Cao Pinna
Laure Gallien
Irena Axmanová
Milan Chytrý
Marco Malavasi
Alicia T. R. Acosta
Juan Antonio Campos
Marta Carboni
The Mediterranean Basin has historically been subject to alien plant invasions that threaten its unique biodiversity. This seasonally dry an… (see more)d densely populated region is undergoing severe climatic and socioeconomic changes, and it is unclear whether these changes will worsen or mitigate plant invasions. Predictions are often biased, as species may not be in equilibrium in the invaded environment, depending on their invasion stage and ecological characteristics. To address future predictions uncertainty, we identified invasion hotspots across multiple biased modelling scenarios and ecological characteristics of successful invaders. We selected 92 alien plant species widespread in Mediterranean Europe and compiled data on their distribution in the Mediterranean and worldwide. We combined these data with environmental and propagule pressure variables to model global and regional species niches, and map their current and future habitat suitability. We identified invasion hotspots, examined their potential future shifts, and compared the results of different modelling strategies. Finally, we generalised our findings by using linear models to determine the traits and biogeographic features of invaders most likely to benefit from global change. Currently, invasion hotspots are found near ports and coastlines throughout Mediterranean Europe. However, many species occupy only a small portion of the environmental conditions to which they are preadapted, suggesting that their invasion is still an ongoing process. Future conditions will lead to declines in many currently widespread aliens, which will tend to move to higher elevations and latitudes. Our trait models indicate that future climates will generally favour species with conservative ecological strategies that can cope with reduced water availability, such as those with short stature and low specific leaf area. Taken together, our results suggest that in future environments, these conservative aliens will move farther from the introduction areas and upslope, threatening mountain ecosystems that have been spared from invasions so far.
The Case for Globalizing Fairness: A Mixed Methods Study on Colonialism, AI, and Health in Africa
Mercy Nyamewaa Asiedu
Awa Dieng
Alexander Haykel
Stephen R. Pfohl
Chirag Nagpal
Maria Nagawa
Abigail Oppong
Sanmi Koyejo
Katherine Heller
With growing application of machine learning (ML) technologies in healthcare, there have been calls for developing techniques to understand … (see more)and mitigate biases these systems may exhibit. Fair-ness considerations in the development of ML-based solutions for health have particular implications for Africa, which already faces inequitable power imbalances between the Global North and South.This paper seeks to explore fairness for global health, with Africa as a case study. We conduct a scoping review to propose axes of disparities for fairness consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. We then conduct qualitative research studies with 672 general population study participants and 28 experts inML, health, and policy focused on Africa to obtain corroborative evidence on the proposed axes of disparities. Our analysis focuses on colonialism as the attribute of interest and examines the interplay between artificial intelligence (AI), health, and colonialism. Among the pre-identified attributes, we found that colonial history, country of origin, and national income level were specific axes of disparities that participants believed would cause an AI system to be biased.However, there was also divergence of opinion between experts and general population participants. Whereas experts generally expressed a shared view about the relevance of colonial history for the development and implementation of AI technologies in Africa, the majority of the general population participants surveyed did not think there was a direct link between AI and colonialism. Based on these findings, we provide practical recommendations for developing fairness-aware ML solutions for health in Africa.
The World Health Organization as an engine of ideational robustness
Jean-Louis Denis
Gaelle Foucault
Pierre Larouche
Miriam Cohen
Marie-Andree Girard
Enhancing and Evaluating Logical Reasoning Abilities of Large Language Models
Shujie Deng
Honghua Dong
A Generative Model of Symmetry Transformations
James U. Allingham
Bruno Mlodozeniec
Shreyas Padhy
Javier Antor'an
Richard E. Turner
Eric T. Nalisnick
Jos'e Miguel Hern'andez-Lobato
Correctly capturing the symmetry transformations of data can lead to efficient models with strong generalization capabilities, though method… (see more)s incorporating symmetries often require prior knowledge. While recent advancements have been made in learning those symmetries directly from the dataset, most of this work has focused on the discriminative setting. In this paper, we construct a generative model that explicitly aims to capture symmetries in the data, resulting in a model that learns which symmetries are present in an interpretable way. We provide a simple algorithm for efficiently learning our generative model and demonstrate its ability to capture symmetries under affine and color transformations. Combining our symmetry model with existing generative models results in higher marginal test-log-likelihoods and robustness to data sparsification.
MagicClay: Sculpting Meshes With Generative Neural Fields
Amir Barda
Vladimir Kim
Amit H. Bermano
Thibault Groueix
The recent developments in neural fields have brought phenomenal capabilities to the field of shape generation, but they lack crucial proper… (see more)ties, such as incremental control - a fundamental requirement for artistic work. Triangular meshes, on the other hand, are the representation of choice for most geometry related tasks, offering efficiency and intuitive control, but do not lend themselves to neural optimization. To support downstream tasks, previous art typically proposes a two-step approach, where first a shape is generated using neural fields, and then a mesh is extracted for further processing. Instead, in this paper we introduce a hybrid approach that maintains both a mesh and a Signed Distance Field (SDF) representations consistently. Using this representation, we introduce MagicClay - an artist friendly tool for sculpting regions of a mesh according to textual prompts while keeping other regions untouched. Our framework carefully and efficiently balances consistency between the representations and regularizations in every step of the shape optimization; Relying on the mesh representation, we show how to render the SDF at higher resolutions and faster. In addition, we employ recent work in differentiable mesh reconstruction to adaptively allocate triangles in the mesh where required, as indicated by the SDF. Using an implemented prototype, we demonstrate superior generated geometry compared to the state-of-the-art, and novel consistent control, allowing sequential prompt-based edits to the same mesh for the first time.
Predicting Grokking Long Before it Happens: A look into the loss landscape of models which grok
Tikeng Notsawo Pascal Junior
Pascal Notsawo
Hattie Zhou
Mohammad Pezeshki
Self-evaluation and self-prompting to improve the reliability of LLMs
Alexandre Piché
Aristides Milios
In order to safely deploy Large Language Models (LLMs), they must be capable of dynamically adapting their behavior based on their level of … (see more)knowledge and uncertainty associated with specific topics. This adaptive behavior, which we refer to as self-restraint, is non-trivial to teach since it depends on the internal knowledge of an LLM. By default, LLMs are trained to maximize the next token likelihood which does not teach the model to modulate its answer based on its level of uncertainty. In order to learn self-restraint, we devise a simple objective that can encourage the model to produce generation that the model is confident in. To optimize this objective, we introduce ReSearch, an iterative search algorithm based on self-evaluation and self-prompting. Our method results in fewer hallucinations overall, both for known and unknown topics, as the model learns to selectively restrain itself. In addition, our method elegantly incorporates the ability to decline, when the model assesses that it cannot provide a response without a high proportion of hallucination.
Self-evaluation and self-prompting to improve the reliability of LLMs
Alexandre Piché
Aristides Milios
In order to safely deploy Large Language Models (LLMs), they must be capable of dynamically adapting their behavior based on their level of … (see more)knowledge and uncertainty associated with specific topics. This adaptive behavior, which we refer to as self-restraint, is non-trivial to teach since it depends on the internal knowledge of an LLM. By default, LLMs are trained to maximize the next token likelihood which does not teach the model to modulate its answer based on its level of uncertainty. In order to learn self-restraint, we devise a simple objective that can encourage the model to produce generation that the model is confident in. To optimize this objective, we introduce ReSearch, an iterative search algorithm based on self-evaluation and self-prompting. Our method results in fewer hallucinations overall, both for known and unknown topics, as the model learns to selectively restrain itself. In addition, our method elegantly incorporates the ability to decline, when the model assesses that it cannot provide a response without a high proportion of hallucination.
On the Scalability of GNNs for Molecular Graphs
Maciej Sypetkowski
Frederik Wenkel
Farimah Poursafaei
Nia Dickson
Karush Suri
Philip Fradkin
Scaling deep learning models has been at the heart of recent revolutions in language modelling and image generation. Practitioners have obse… (see more)rved a strong relationship between model size, dataset size, and performance. However, structure-based architectures such as Graph Neural Networks (GNNs) are yet to show the benefits of scale mainly due to the lower efficiency of sparse operations, large data requirements, and lack of clarity about the effectiveness of various architectures. We address this drawback of GNNs by studying their scaling behavior. Specifically, we analyze message-passing networks, graph Transformers, and hybrid architectures on the largest public collection of 2D molecular graphs. For the first time, we observe that GNNs benefit tremendously from the increasing scale of depth, width, number of molecules, number of labels, and the diversity in the pretraining datasets, resulting in a 30.25% improvement when scaling to 1 billion parameters and 28.98% improvement when increasing size of dataset to eightfold. We further demonstrate strong finetuning scaling behavior on 38 tasks, outclassing previous large models. We hope that our work paves the way for an era where foundational GNNs drive pharmaceutical drug discovery.