Portrait of Mirco Ravanelli

Mirco Ravanelli

Associate Academic Member
Assistant Professor, Concordia University, Gina Cody School of Engineering and Computer Science
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Deep Learning

Biography

Mirco Ravanelli is an assistant professor at Concordia University, adjunct professor at Université de Montréal and associate member of Mila – Quebec Artificial Intelligence Institute.

Ravanelli is an expert in deep learning and conversational AI, publishing over sixty papers in these fields. His contributions were honoured with a 2022 Amazon Research Award.

His research focuses primarily on novel deep learning algorithms, including self-supervised, continual, multimodal, cooperative and energy-efficient learning.

Formerly a postdoctoral fellow at Mila under Yoshua Bengio, he founded and now leads SpeechBrain, one of the most extensively used open-source toolkits in the field of speech processing and conversational AI.

Current Students

Master's Research - Concordia University
Undergraduate - Concordia University
Research Intern - Concordia University University
Collaborating researcher - Concordia University University
Collaborating researcher - Concordia University University
Research Intern - Concordia University
Master's Research - Concordia University
PhD - Concordia University
Co-supervisor :
Master's Research - Concordia University
Co-supervisor :
Master's Research - Concordia University
Master's Research - Concordia University
PhD - Concordia University
Co-supervisor :
PhD - Concordia University
Collaborating researcher - Concordia University University
PhD - Université Laval
Principal supervisor :
Research Intern - Concordia University Univesity
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Concordia University
PhD - Concordia University
Co-supervisor :
Postdoctorate - McGill University
PhD - Université de Montréal
Research Intern - Sapienza University of Rome
Independent visiting researcher - INRIA - Univ. Grenoble Alpes

Publications

Audio Prototypical Network for Controllable Music Recommendation
Traditional recommendation systems represent user preferences in dense representations obtained through black-box encoder models. While thes… (see more)e models often provide strong recommendation performance, they lack interpretability for users, leaving users unable to understand or control the system’s modeling of their preferences. This limitation is especially challenging in music recommendation, where user preferences are highly personal and often evolve based on nuanced qualities like mood, genre, tempo, or instrumentation. In this paper, we propose an audio prototypical network for controllable music recommendation. This network expresses user preferences in terms of prototypes representative of semantically meaningful features pertaining to musical qualities. We show that the model obtains competitive recommendation performance compared to popular baseline models while also providing interpretable and controllable user profiles.
Autoregressive Speech Enhancement via Acoustic Tokens
Does Language Matter for Early Detection of Parkinson's Disease from Speech?
Peter William VanHarn Plantinga
Briac Cordelle
Dominique Louër
Denise Klein
Using speech samples as a biomarker is a promising avenue for detecting and monitoring the progression of Parkinson's disease (PD), but ther… (see more)e is considerable disagreement in the literature about how best to collect and analyze such data. Early research in detecting PD from speech used a sustained vowel phonation (SVP) task, while some recent research has explored recordings of more cognitively demanding tasks. To assess the role of language in PD detection, we tested pretrained models with varying data types and pretraining objectives and found that (1) text-only models match the performance of vocal-feature models, (2) multilingual Whisper outperforms self-supervised models whereas monolingual Whisper does worse, and (3) AudioSet pretraining improves performance on SVP but not spontaneous speech. These findings together highlight the critical role of language for the early detection of Parkinson's disease.
From Black Box to Biomarker: Sparse Autoencoders for Interpreting Speech Models of Parkinson's Disease
Peter William VanHarn Plantinga
Jen-Kai Chen
Roozbeh Sattari
Denise Klein
Speech holds promise as a cost-effective and non-invasive biomarker for neurological conditions such as Parkinson's disease (PD). While deep… (see more) learning systems trained on raw audio can find subtle signals not available from hand-crafted features, their black-box nature hinders clinical adoption. To address this, we apply sparse autoencoders (SAEs) to uncover interpretable internal representations from a speech-based PD detection system. We introduce a novel mask-based activation for adapting SAEs to small biomedical datasets, creating sparse disentangled dictionary representations. These dictionary entries are found to have strong associations with characteristic articulatory deficits in PD speech, such as reduced spectral flux and increased spectral flatness in the low-energy regions highlighted by the model attention. We further show that the spectral flux is related to volumetric measurements of the putamen from MRI scans, demonstrating the potential of SAEs to reveal clinically relevant biomarkers for disease monitoring and diagnosis.
Discrete Audio Tokens: More Than a Survey!
Gallil Maimon
Adel Moumen
Darius Petermann
Jiatong Shi
Haibin Wu
Haici Yang
Anastasia Kuznetsova
Ricard Marxer
Bhuvana Ramabhadran
Benjamin Elizalde
Loren Lugosch
Jinyu Li
Phil Woodland
Minje Kim
Hung-yi Lee
Shinji Watanabe
Yossi Adi … (see 1 more)
Discrete audio tokens are compact representations that aim to preserve perceptual quality, phonetic content, and speaker characteristics whi… (see more)le enabling efficient storage and inference, as well as competitive performance across diverse downstream tasks.They provide a practical alternative to continuous features, enabling the integration of speech and audio into modern large language models (LLMs). As interest in token-based audio processing grows, various tokenization methods have emerged, and several surveys have reviewed the latest progress in the field. However, existing studies often focus on specific domains or tasks and lack a unified comparison across various benchmarks. This paper presents a systematic review and benchmark of discrete audio tokenizers, covering three domains: speech, music, and general audio. We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream performance, and acoustic language modeling, and analyze trade-offs through controlled ablation studies. Our findings highlight key limitations, practical considerations, and open challenges, providing insight and guidance for future research in this rapidly evolving area. For more information, including our main results and tokenizer database, please refer to our website: https://poonehmousavi.github.io/dates-website/.
Discrete Audio Tokens: More Than a Survey!
Gallil Maimon
Adel Moumen
Darius Petermann
Jiatong Shi
Haibin Wu
Haici Yang
Anastasia Kuznetsova
Ricard Marxer
Bhuvana Ramabhadran
Benjamin Elizalde
Loren Lugosch
Jinyu Li
Phil Woodland
Minje Kim
Hung-yi Lee
Shinji Watanabe
Yossi Adi … (see 1 more)
Discrete audio tokens are compact representations that aim to preserve perceptual quality, phonetic content, and speaker characteristics whi… (see more)le enabling efficient storage and inference, as well as competitive performance across diverse downstream tasks. They provide a practical alternative to continuous features, enabling the integration of speech and audio into modern large language models (LLMs). As interest in token-based audio processing grows, various tokenization methods have emerged, and several surveys have reviewed the latest progress in the field. However, existing studies often focus on specific domains or tasks and lack a unified comparison across various benchmarks. This paper presents a systematic review and benchmark of discrete audio tokenizers, covering three domains: speech, music, and general audio. We propose a taxonomy of tokenization approaches based on encoder-decoder, quantization techniques, training paradigm, streamability, and application domains. We evaluate tokenizers on multiple benchmarks for reconstruction, downstream performance, and acoustic language modeling, and analyze trade-offs through controlled ablation studies. Our findings highlight key limitations, practical considerations, and open challenges, providing insight and guidance for future research in this rapidly evolving area. For more information, including our main results and tokenizer database, please refer to our website: https://poonehmousavi.github.io/dates-website/.
LiSTEN: Learning Soft Token Embeddings for Neural Audio LLMs
Foundation models based on large language models (LLMs) have shown great success in handling various tasks and modalities. However, adapting… (see more) these models for general-purpose audio-language tasks is challenging due to differences in acoustic environments and task variations. In this work, we introduce LiSTEN Learning Soft Token Embeddings for Neural Audio LLMs), a framework for adapting LLMs to speech and audio tasks. LiSTEN uses a dynamic prompt selection strategy with learnable key-value pairs, allowing the model to balance general and task-specific knowledge while avoiding overfitting in a multitask setting. Our approach reduces dependence on large-scale ASR or captioning datasets, achieves competitive performance with fewer trainable parameters, and simplifies training by using a single-stage process. Additionally, LiSTEN enhances interpretability by analyzing the diversity and overlap of selected prompts across different tasks.
Calm-Whisper: Reduce Whisper Hallucination On Non-Speech By Calming Crazy Heads Down
Yingzhi Wang
Anas Alhmoud
Saad Alsahly
Muhammad Alqurishi
ALAS: Measuring Latent Speech-Text Alignment For Spoken Language Understanding In Multimodal LLMs
Calm-Whisper: Reduce Whisper Hallucination On Non-Speech By Calming Crazy Heads Down
Yingzhi Wang
Anas Alhmoud
Saad Alsahly
Muhammad Alqurishi
LiSTEN: Learning Soft Token Embeddings for Neural Audio LLMs
Foundation models based on large language models (LLMs) have shown great success in handling various tasks and modalities. However, adapting… (see more) these models for general-purpose audio-language tasks is challenging due to differences in acoustic environments and task variations. In this work, we introduce LiSTEN Learning Soft Token Embeddings for Neural Audio LLMs), a framework for adapting LLMs to speech and audio tasks. LiSTEN uses a dynamic prompt selection strategy with learnable key-value pairs, allowing the model to balance general and task-specific knowledge while avoiding overfitting in a multitask setting. Our approach reduces dependence on large-scale ASR or captioning datasets, achieves competitive performance with fewer trainable parameters, and simplifies training by using a single-stage process. Additionally, LiSTEN enhances interpretability by analyzing the diversity and overlap of selected prompts across different tasks.
Investigating the Effectiveness of Explainability Methods in Parkinson's Detection from Speech
Speech impairments in Parkinson's disease (PD) provide significant early indicators for diagnosis. While models for speech-based PD detectio… (see more)n have shown strong performance, their interpretability remains underexplored. This study systematically evaluates several explainability methods to identify PD-specific speech features, aiming to support the development of accurate, interpretable models for clinical decision-making in PD diagnosis and monitoring. Our methodology involves (i) obtaining attributions and saliency maps using mainstream interpretability techniques, (ii) quantitatively evaluating the faithfulness of these maps and their combinations obtained via union and intersection through a range of established metrics, and (iii) assessing the information conveyed by the saliency maps for PD detection from an auxiliary classifier. Our results reveal that, while explanations are aligned with the classifier, they often fail to provide valuable information for domain experts.