Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Learn how to leverage generative AI to support and improve your productivity at work. The next cohort will take place online on August 26 and 28, 2025.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Brain function represents one of the most complex systems driving our world. Decoding its signals poses significant challenges, particularly… (see more) due to the limited availability of data and the high cost of recordings. The existence of large hospital datasets and laboratory collections partially mitigates this issue. However, the lack of standardized recording protocols, varying numbers of channels, diverse setups, scenarios, and recording devices further complicate the task. This work addresses these challenges by introducing the Brain Foundation Model (BFM), a suite of open-source models trained on brain signals. These models serve as foundational tools for various types of time-series neuroimaging tasks. This work presents the first model of the BFM series, which is trained on electroencephalogram signal data. Our results demonstrate that BFM-EEG can generate signals more accurately than other models. Upon acceptance, we will release the model weights and pipeline.
Aiming to build foundation models for time-series forecasting and study their scaling behavior, we present here our work-in-progress on Lag-… (see more)Llama, a general-purpose univariate probabilistic time-series forecasting model trained on a large collection of time-series data. The model shows good zero-shot prediction capabilities on unseen "out-of-distribution" time-series datasets, outperforming supervised baselines. We use smoothly broken power-laws to fit and predict model scaling behavior. The open source code is made available at
https://github.com/kashif/pytorch-transformer-ts.
Over the past years, foundation models have caused a paradigm shift in machine learning due to their unprecedented capabilities for zero-sho… (see more)t and few-shot generalization. However, despite the success of foundation models in modalities such as natural language processing and computer vision, the development of foundation models for time series forecasting has lagged behind. We present Lag-Llama, a general-purpose foundation model for univariate probabilistic time series forecasting based on a decoder-only transformer architecture that uses lags as covariates. Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities compared to a wide range of forecasting models on downstream datasets across domains. Moreover, when fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance, outperforming prior deep learning approaches, emerging as the best general-purpose model on average. Lag-Llama serves as a strong contender to the current state-of-art in time series forecasting and paves the way for future advancements in foundation models tailored to time series data.
Aiming to build foundation models for time-series forecasting and study their scaling behavior, we present here our work-in-progress on Lag-… (see more)Llama , a general-purpose univariate probabilistic time-series forecasting model trained on a large collection of time-series data. The model shows good zero-shot prediction capabilities on unseen “out-of-distribution” time-series datasets, outperforming supervised baselines. We use smoothly broken power-laws [7] to fit and predict model scaling behavior. The open source code is made available at https://github