Portrait of Mathieu Godbout is unavailable

Mathieu Godbout

PhD - Université Laval
Supervisor

Publications

Informing the development of an outcome set and banks of items to measure mobility among individuals with acquired brain injury using natural language processing
Rehab Alhasani
Mathieu Godbout
Claudine Auger
Anouk Lamontagne
Sara Ahmed
Predicting Visual Improvement After Macular Hole Surgery: A Combined Model Using Deep Learning and Clinical Features
Alexandre Lachance
Mathieu Godbout
Fares Antaki
Mélanie Hébert
Serge Bourgault
Mathieu Caissie
Éric Tourville
Ali Dirani
Predicting Visual Improvement After Macular Hole Surgery: A Combined Model Using Deep Learning and Clinical Features
Alexandre Lachance
Mathieu Godbout
Fares Antaki
Mélanie Hébert
Serge Bourgault
Mathieu Caissie
Éric Tourville
A. Dirani
Purpose The purpose of this study was to assess the feasibility of deep learning (DL) methods to enhance the prediction of visual acuity (VA… (see more)) improvement after macular hole (MH) surgery from a combined model using DL on high-definition optical coherence tomography (HD-OCT) B-scans and clinical features. Methods We trained a DL convolutional neural network (CNN) using pre-operative HD-OCT B-scans of the macula and combined with a logistic regression model of pre-operative clinical features to predict VA increase ≥15 Early Treatment Diabetic Retinopathy Study (ETDRS) letters at 6 months post-vitrectomy in closed MHs. A total of 121 MHs with 242 HD-OCT B-scans and 484 clinical data points were used to train, validate, and test the model. Prediction of VA increase was evaluated using the area under the receiver operating characteristic curve (AUROC) and F1 scores. We also extracted the weight of each input feature in the hybrid model. Results All performances are reported on the held-out test set, matching results obtained with cross-validation. Using a regression on clinical features, the AUROC was 80.6, with an F1 score of 79.7. For the CNN, relying solely on the HD-OCT B-scans, the AUROC was 72.8 ± 14.6, with an F1 score of 61.5 ± 23.7. For our hybrid regression model using clinical features and CNN prediction, the AUROC was 81.9 ± 5.2, with an F1 score of 80.4 ± 7.7. In the hybrid model, the baseline VA was the most important feature (weight = 59.1 ± 6.9%), while the weight of HD-OCT prediction was 9.6 ± 4.2%. Conclusions Both the clinical data and HD-OCT models can predict postoperative VA improvement in patients undergoing vitrectomy for a MH with good discriminative performances. Combining them into a hybrid model did not significantly improve performance. Translational Relevance OCT-based DL models can predict postoperative VA improvement following vitrectomy for MH but fusing those models with clinical data might not provide improved predictive performance.