We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Transcriptome foundation models (TFMs) hold great promises of deciphering the transcriptomic language that dictate diverse cell functions by… (see more) self-supervised learning on large-scale single-cell gene expression data, and ultimately unraveling the complex mechanisms of human diseases. However, current TFMs treat cells as independent samples and ignore the taxonomic relationships between cell types, which are available in cell ontology graphs. We argue that effectively leveraging this ontology information during the TFM pre-training can improve learning biologically meaningful gene co-expression patterns while preserving TFM as a general purpose foundation model for downstream zero-shot and fine-tuning tasks. To this end, we present **s**ingle **c**ell, **Cell-o**ntology guided TFM (scCello). We introduce cell-type coherence loss and ontology alignment loss, which are minimized along with the masked gene expression prediction loss during the pre-training. The novel loss component guide scCello to learn the cell-type-specific representation and the structural relation between cell types from the cell ontology graph, respectively. We pre-trained scCello on 22 million cells from CellxGene database leveraging their cell-type labels mapped to the cell ontology graph from Open Biological and Biomedical Ontology Foundry. Our TFM demonstrates competitive generalization and transferability performance over the existing TFMs on biologically important tasks including identifying novel cell types of unseen cells, prediction of cell-type-specific marker genes, and cancer drug responses.
Transcriptome foundation models (TFMs) hold great promises of deciphering the transcriptomic language that dictate diverse cell functions by… (see more) self-supervised learning on large-scale single-cell gene expression data, and ultimately unraveling the complex mechanisms of human diseases. However, current TFMs treat cells as independent samples and ignore the taxonomic relationships between cell types, which are available in cell ontology graphs. We argue that effectively leveraging this ontology information during the TFM pre-training can improve learning biologically meaningful gene co-expression patterns while preserving TFM as a general purpose foundation model for downstream zero-shot and fine-tuning tasks. To this end, we present **s**ingle **c**ell, **Cell**-**o**ntology guided TFM (scCello). We introduce cell-type coherence loss and ontology alignment loss, which are minimized along with the masked gene expression prediction loss during the pre-training. The novel loss component guide scCello to learn the cell-type-specific representation and the structural relation between cell types from the cell ontology graph, respectively. We pre-trained scCello on 22 million cells from CellxGene database leveraging their cell-type labels mapped to the cell ontology graph from Open Biological and Biomedical Ontology Foundry. Our TFM demonstrates competitive generalization and transferability performance over the existing TFMs on biologically important tasks including identifying novel cell types of unseen cells, prediction of cell-type-specific marker genes, and cancer drug responses. Source code and model
weights are available at https://github.com/DeepGraphLearning/scCello.
Designing novel functional proteins crucially depends on accurately modeling their fitness landscape. Given the limited availability of func… (see more)tional annotations from wet-lab experiments, previous methods have primarily relied on self-supervised models trained on vast, unlabeled protein sequence or structure datasets. While initial protein representation learning studies solely focused on either sequence or structural features, recent hybrid architectures have sought to merge these modalities to harness their respective strengths. However, these sequence-structure models have so far achieved only incremental improvements when compared to the leading sequence-only approaches, highlighting unresolved challenges effectively leveraging these modalities together. Moreover, the function of certain proteins is highly dependent on the granular aspects of their surface topology, which have been overlooked by prior models.
To address these limitations, we introduce the Sequence-Structure-Surface Fitness (**S3F**) model — a novel multimodal representation learning framework that integrates protein features across several scales. Our approach combines sequence representations from a protein language model with Geometric Vector Perceptron networks encoding protein backbone and detailed surface topology. The proposed method achieves state-of-the-art fitness prediction on the ProteinGym benchmark encompassing 217 substitution deep mutational scanning assays, and provides insights into the determinants of protein function.
Our code is at https://github.com/DeepGraphLearning/S3F.
The protein dynamics are common and important for their biological functions and properties, the study of which usually involves time-consum… (see more)ing molecular dynamics (MD) simulations *in silico*. Recently, generative models has been leveraged as a surrogate sampler to obtain conformation ensembles with orders of magnitude faster and without requiring any simulation data (a "zero-shot" inference). However, being agnostic of the underlying energy landscape, the accuracy of such generative model may still be limited. In this work, we explore the few-shot setting of such pre-trained generative sampler which incorporates MD simulations in a tractable manner. Specifically, given a target protein of interest, we first acquire some seeding conformations from the pre-trained sampler followed by a number of physical simulations in parallel starting from these seeding samples. Then we fine-tuned the generative model using the simulation trajectories above to become a target-specific sampler. Experimental results demonstrated the superior performance of such few-shot conformation sampler at a tractable computational cost.
Protein language models are a powerful tool for learning protein representations through pre-training on vast protein sequence datasets.
Ho… (see more)wever, traditional protein language models lack explicit structural supervision, despite its relevance to protein function.
To address this issue, we introduce the integration of remote homology detection to distill structural information into protein language models without requiring explicit protein structures as input.
We evaluate the impact of this structure-informed training on downstream protein function prediction tasks.
Experimental results reveal consistent improvements in function annotation accuracy for EC number and GO term prediction. Performance on mutant datasets, however, varies based on the relationship between targeted properties and protein structures. This underscores the importance of considering this relationship when applying structure-aware training to protein function prediction tasks. Code and model weights will be made available upon acceptance.
In the realm of antibody therapeutics development, increasing the binding affinity of an antibody to its target antigen is a crucial task. T… (see more)his paper presents GearBind, a pretrainable deep neural network designed to be effective for in silico affinity maturation. Leveraging multi-level geometric message passing alongside contrastive pretraining on protein structural data, GearBind capably models the complex interplay of atom-level interactions within protein complexes, surpassing previous state-of-the-art approaches on SKEMPI v2 in terms of Pearson correlation, mean absolute error (MAE) and root mean square error (RMSE). In silico experiments elucidate that pretraining helps GearBind become sensitive to mutation-induced binding affinity changes and reflective of amino acid substitution tendency. Using an ensemble model based on pretrained GearBind, we successfully optimize the affinity of CR3022 to the spike (S) protein of the SARS-CoV-2 Omicron strain. Our strategy yields a high success rate with up to 17-fold affinity increase. GearBind proves to be an effective tool in narrowing the search space for in vitro antibody affinity maturation, underscoring the utility of geometric deep learning and adept pre-training in macromolecule interaction modeling.
Structure-based protein design has attracted increasing interest, with numerous methods being introduced in recent years.
However, a univers… (see more)ally accepted method for evaluation has not been established, since the wet-lab validation can be overly time-consuming for the development of new algorithms, and the
Structure-based protein design has attracted increasing interest, with numerous methods being introduced in recent years.
However, a univers… (see more)ally accepted method for evaluation has not been established, since the wet-lab validation can be overly time-consuming for the development of new algorithms, and the