Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Working memory is a central cognitive ability crucial for intelligent decision-making. Recent experimental and computational work studying w… (see more)orking memory has primarily used categorical (i.e., one-hot) inputs, rather than ecologically relevant, multidimensional naturalistic ones. Moreover, studies have primarily investigated working memory during single or few cognitive tasks. As a result, an understanding of how naturalistic object information is maintained in working memory in neural networks is still lacking. To bridge this gap, we developed sensory-cognitive models, comprising a convolutional neural network (CNN) coupled with a recurrent neural network (RNN), and trained them on nine distinct N-back tasks using naturalistic stimuli. By examining the RNN's latent space, we found that: (1) Multi-task RNNs represent both task-relevant and irrelevant information simultaneously while performing tasks; (2) The latent subspaces used to maintain specific object properties in vanilla RNNs are largely shared across tasks, but highly task-specific in gated RNNs such as GRU and LSTM; (3) Surprisingly, RNNs embed objects in new representational spaces in which individual object features are less orthogonalized relative to the perceptual space; (4) The transformation of working memory encodings (i.e., embedding of visual inputs in the RNN latent space) into memory was shared across stimuli, yet the transformations governing the retention of a memory in the face of incoming distractor stimuli were distinct across time. Our findings indicate that goal-driven RNNs employ chronological memory subspaces to track information over short time spans, enabling testable predictions with neural data.
The ability to perform complex tasks from detailed instructions is a key to the remarkable achievements of our species. As humans, we are no… (see more)t only capable of performing a wide variety of tasks but also very complex ones that may entail hundreds or thousands of steps to complete. Large language models and their more recent multimodal counterparts that integrate textual and visual inputs have achieved unprecedented success in performing complex tasks. Yet, most existing benchmarks are largely confined to single-modality inputs — either text or vision — and thus, narrowing the scope of multimodal integration assessments, particularly for instruction-following in multimodal contexts. To bridge this gap, we introduce the instructed-Virtual VISual Decision Making (iWISDM) environment engineered to generate a limitless array of vision-language tasks of varying complexity. Using iWISDM, we compiled three distinct benchmarks of instruction following visual tasks across varying complexity levels and evaluated several newly developed multimodal models on these benchmarks. Our findings establish iWISDM as a robust benchmark for assessing the instructional adherence of both existing and emergent multimodal models and highlight a large gap in these models’ ability to precisely follow instructions.