Portrait of Timothy O'Donnell

Timothy O'Donnell

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, McGill University, Department of Linguistics
Research Topics
Information Theory
Natural Language Processing
Probabilistic Models

Biography

I am an assistant professor in the Department of Linguistics at McGill University.

In my research, I develop mathematical models of language generalization, learning and processing. My research draws on experimental methods from psychology, formal modelling techniques from natural language processing, theoretical tools from linguistics, and problems in all three of these areas.

Current Students

PhD - McGill University
PhD - McGill University
PhD - McGill University
PhD - McGill University
Principal supervisor :
Collaborating Alumni - McGill University
PhD - McGill University

Publications

Compositional Generalization in Dependency Parsing
Compositionality— the ability to combine familiar units like words into novel phrases and sentences— has been the focus of intense inter… (see more)est in artificial intelligence in recent years. To test compositional generalization in semantic parsing, Keysers et al. (2020) introduced Compositional Freebase Queries (CFQ). This dataset maximizes the similarity between the test and train distributions over primitive units, like words, while maximizing the compound divergence: the dissimilarity between test and train distributions over larger structures, like phrases. Dependency parsing, however, lacks a compositional generalization benchmark. In this work, we introduce a gold-standard set of dependency parses for CFQ, and use this to analyze the behaviour of a state-of-the art dependency parser (Qi et al., 2020) on the CFQ dataset. We find that increasing compound divergence degrades dependency parsing performance, although not as dramatically as semantic parsing performance. Additionally, we find the performance of the dependency parser does not uniformly degrade relative to compound divergence, and the parser performs differently on different splits with the same compound divergence. We explore a number of hypotheses for what causes the non-uniform degradation in dependency parsing performance, and identify a number of syntactic structures that drive the dependency parser’s lower performance on the most challenging splits.
Characterizing Idioms: Conventionality and Contingency
Michaela Socolof
Michael Wagner
Idioms are unlike most phrases in two important ways. First, words in an idiom have non-canonical meanings. Second, the non-canonical meanin… (see more)gs of words in an idiom are contingent on the presence of other words in the idiom. Linguistic theories differ on whether these properties depend on one another, as well as whether special theoretical machinery is needed to accommodate idioms. We define two measures that correspond to the properties above, and we show that idioms fall at the expected intersection of the two dimensions, but that the dimensions themselves are not correlated. Our results suggest that introducing special machinery to handle idioms may not be warranted.
Recursive Top-Down Production for Sentence Generation with Latent Trees
Exploiting Syntactic Structure for Better Language Modeling: A Syntactic Distance Approach
Wenyu Du
Zhouhan Lin
Yikang Shen
Yue Sara Zhang
It is commonly believed that knowledge of syntactic structure should improve language modeling. However, effectively and computationally eff… (see more)iciently incorporating syntactic structure into neural language models has been a challenging topic. In this paper, we make use of a multi-task objective, i.e., the models simultaneously predict words as well as ground truth parse trees in a form called “syntactic distances”, where information between these two separate objectives shares the same intermediate representation. Experimental results on the Penn Treebank and Chinese Treebank datasets show that when ground truth parse trees are provided as additional training signals, the model is able to achieve lower perplexity and induce trees with better quality.
CLOSURE: Assessing Systematic Generalization of CLEVR Models
Harm de Vries
Shikhar Murty
Philippe Beaudoin