Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Global cooperation on climate change mitigation is essential to limit temperature increases while supporting long-term, equitable economic g… (see more)rowth and sustainable development. Achieving such cooperation among diverse regions, each with different incentives, in a dynamic environment shaped by complex geopolitical and economic factors, without a central authority, is a profoundly challenging game-theoretic problem. This article introduces RICE-N, a multi-region integrated assessment model that simulates the global climate, economy, and climate negotiations and agreements. RICE-N uses multi-agent reinforcement learning (MARL) to encourage agents to develop strategic behaviors based on the environmental dynamics and the actions of the others. We present two negotiation protocols: (1) Bilateral Negotiation, an exemplary protocol and (2) Basic Club, inspired from Climate Clubs and the carbon border adjustment mechanism (Nordhaus, 2015; Comissions, 2022). We compare their impact against a no-negotiation baseline with various mitigation strategies, showing that both protocols significantly reduce temperature growth at the cost of a minor drop in production while ensuring a more equitable distribution of the emission reduction costs.
2025-10-06
Proceedings of the 42nd International Conference on Machine Learning (published)
A major bottleneck in scientific discovery consists of narrowing an exponentially large set of objects, such as proteins or molecules, to a … (see more)small set of promising candidates with desirable properties. While this process can rely on expert knowledge, recent methods leverage reinforcement learning (RL) guided by a proxy reward function to enable this filtering. By employing various forms of entropy regularization, these methods aim to learn samplers that generate diverse candidates that are highly rated by the proxy function. In this work, we make two main contributions. First, we show that these methods are liable to generate overly diverse, suboptimal candidates in large search spaces. To address this issue, we introduce a novel unified operator that combines several regularized RL operators into a general framework that better targets peakier sampling distributions. Secondly, we offer a novel, robust RL perspective of this filtering process. The regularization can be interpreted as robustness to a compositional form of uncertainty in the proxy function (i.e., the true evaluation of a candidate differs from the proxy's evaluation). Our analysis leads us to a novel, easy-to-use algorithm we name trajectory general mellowmax (TGM): we show it identifies higher quality, diverse candidates than baselines in both synthetic and real-world tasks. Code: https://github.com/marcojira/tgm.
A major bottleneck in scientific discovery involves narrowing a large combinatorial set of objects, such as proteins or molecules, to a smal… (see more)l set of promising candidates. While this process largely relies on expert knowledge, recent methods leverage reinforcement learning (RL) to enhance this filtering. They achieve this by estimating proxy reward functions from available datasets and using regularization to generate more diverse candidates. These reward functions are inherently uncertain, raising a particularly salient challenge for scientific discovery. In this work, we show that existing methods, often framed as sampling proportional to a reward function, are inadequate and yield suboptimal candidates, especially in large search spaces. To remedy this issue, we take a robust RL approach and introduce a unified operator that seeks robustness to the uncertainty of the proxy reward function. This general operator targets peakier sampling distributions while encompassing known soft RL operators. It also leads us to a novel algorithm that identifies higher-quality, diverse candidates in both synthetic and real-world tasks. Ultimately, our work offers a new, flexible perspective on discrete compositional generation tasks. Code: https://github.com/marcojira/tgm.
A major bottleneck in scientific discovery involves narrowing a large combinatorial set of objects, such as proteins or molecules, to a smal… (see more)l set of promising candidates. While this process largely relies on expert knowledge, recent methods leverage reinforcement learning (RL) to enhance this filtering. They achieve this by estimating proxy reward functions from available datasets and using regularization to generate more diverse candidates. These reward functions are inherently uncertain, raising a particularly salient challenge for scientific discovery. In this work, we show that existing methods, often framed as sampling proportional to a reward function, are inadequate and yield suboptimal candidates, especially in large search spaces. To remedy this issue, we take a robust RL approach and introduce a unified operator that seeks robustness to the uncertainty of the proxy reward function. This general operator targets peakier sampling distributions while encompassing known soft RL operators. It also leads us to a novel algorithm that identifies higher-quality, diverse candidates in both synthetic and real-world tasks. Ultimately, our work offers a new, flexible perspective on discrete compositional generation tasks. Code: https://github.com/marcojira/tgm.
Given two sets of elements (such as cell types and drug compounds), researchers typically only have access to a limited subset of their inte… (see more)ractions. The task of causal imputation involves using this subset to predict unobserved interactions. Squires et al. (2022) have proposed two estimators for this task based on the synthetic interventions (SI) estimator: SI-A (for actions) and SI-C (for contexts). We extend their work and introduce a novel causal imputation estimator, generalized synthetic interventions (GSI). We prove the identifiability of this estimator for data generated from a more complex latent factor model. On synthetic and real data we show empirically that it recovers or outperforms their estimators.
Given two sets of elements (such as cell types and drug compounds), researchers typically only have access to a limited subset of their inte… (see more)ractions. The task of causal imputation involves using this subset to predict unobserved interactions. Squires et al. (2022) have proposed two estimators for this task based on the synthetic interventions (SI) estimator: SI-A (for actions) and SI-C (for contexts). We extend their work and introduce a novel causal imputation estimator, generalized synthetic interventions (GSI). We prove the identifiability of this estimator for data generated from a more complex latent factor model. On synthetic and real data we show empirically that it recovers or outperforms their estimators.
Deep generative models have made tremendous progress in modeling complex data, often exhibiting generation quality that surpasses a typical … (see more)human's ability to discern the authenticity of samples. Undeniably, a key driver of this success is enabled by the massive amounts of web-scale data consumed by these models. Due to these models' striking performance and ease of availability, the web will inevitably be increasingly populated with synthetic content. Such a fact directly implies that future iterations of generative models will be trained on both clean and artificially generated data from past models. In this paper, we develop a framework to rigorously study the impact of training generative models on mixed datasets---from classical training on real data to self-consuming generative models trained on purely synthetic data. We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough and the proportion of clean training data (w.r.t. synthetic data) is large enough. We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models on CIFAR10 and FFHQ.